Deciphering the molecular basis for photosynthetic parameters in Bambara groundnut (Vigna subterranea L. Verdc) under drought stress

Author:

Gao XiuqingORCID,Chai Hui Hui,Ho Wai Kuan,Mayes Sean,Massawe FestoORCID

Abstract

Abstract Background Assessment of segregating populations for their ability to withstand drought stress conditions is one of the best approaches to develop breeding lines and drought tolerant varieties. Bambara groundnut (Vigna subterranea L. Verdc.) is a leguminous crop, capable of growing in low-input agricultural systems in semi-arid areas. An F4 bi-parental segregating population obtained from S19-3 × DodR was developed to evaluate the effect of drought stress on photosynthetic parameters and identify QTLs associated with these traits under drought-stressed and well-watered conditions in a rainout shelter. Results Stomatal conductance (gs), photosynthesis rate (A), transpiration rate (E) and intracellular CO2 (Ci) were significantly reduced (p < 0.05) while water use efficiency (WUE) was significantly increased (p < 0.05) under drought-stressed conditions. A strong linear correlation was observed between gs, WUE, A, E and Ci under both water regimes. The variability between different water treatment, among individual lines and the interaction between lines and environment for photosynthetic parameters provides resources for superior lines selection and drought resistant variety improvement. Significant QTL for gs and FV/FM under well-watered conditions were mapped on LG5 and LG3, respectively, with more than 20% of the PVE, which could be considered as the major QTL to control these traits. Five clustered QTLs for photosynthetic traits under drought-stressed and well-watered conditions were mapped on LG5, LG6A, LG10 and LG11, respectively. Conclusions Significant and putative QTLs associated with photosynthetic parameters and the effect of drought stress on these traits have been revealed by QTL linkage mapping and field experiment in the F4 segregating population derived from S19-3 × DodR in bambara groundnut. The study provides fundamental knowledge of how photosynthetic traits response to drought stress and how genetic features control these traits under drought-stressed and well-watered conditions in bambara groundnut.

Funder

University of Nottingham Malaysia

North University of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3