Candidate powdery mildew resistance gene in wheat landrace cultivar Hongyoumai discovered using SLAF and BSR-seq

Author:

Wang Junmei,Li Yahong,Xu Fei,Xu Hongxing,Han Zihang,Liu Lulu,Song Yuli

Abstract

Abstract Background Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is an important disease affecting wheat production. Planting resistant cultivars is an effective, safe, and economical method to control the disease. Map construction using next-generation sequencing facilitates gene cloning based on genetic maps and high-throughput gene expression studies. In this study, specific-locus amplified fragment sequencing (SLAF) was used to analyze Huixianhong (female parent), Hongyoumai (male parent) and two bulks (50 homozygous resistant and 50 susceptible F2:3 segregating population derived from Huixianhong × Hongyoumai to determine a candidate gene region for resistance to powdery mildew on the long arm of chromosome 7B in wheat landrace Hongyoumai. Gene expressions of candidate regions were obtained using bulked segregant RNA-seq in 10 homozygous resistant and 10 susceptible progeny inoculated by Bgt.. Candidate genes were obtained using homology-based cloning in two parents. Results A 12.95 Mb long candidate region in chromosome 7BL was identified, and five blocks in SLAF matched the scaffold of the existing co-segregation marker Xmp1207. In the candidate region, 39 differentially expressed genes were identified using RNA-seq, including RGA4 (Wheat_Chr_Trans_newGene_16173)—a disease resistance protein whose expression was upregulated in the resistant pool at 16 h post inoculation with Bgt. Quantitative reverse transcription (qRT)-PCR was used to further verify the expression patterns in Wheat_Chr_Trans_newGene_16173 that were significantly different in the two parents Hongyoumai and Huixianhong. Two RGA4 genes were cloned based on the sequence of Wheat_Chr_Trans_newGene_16173, respectively from two parent and there was one amino acid mutation: S to G in Huixianhong on 510 loci. Conclusion The combination of SLAF and BSR-seq methods identified a candidate region of pmHYM in the chromosome 7BL of wheat landrace cultivar Hongyoumai. Comparative analysis between the scaffold of co-segregating marker Xmp1207 and SLAF-seq showed five matching blocks. qRT-PCR showed that only the resistant gene Wheat_Chr_Trans_newGene_16173 was significantly upregulated in the resistant parent Hongyoumai after inoculation with Bgt, and gene cloning revealed a difference in one amino acid between the two parent genes, indicating it was involved in the resistance response and may be the candidate resistance gene pmHYM.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference61 articles.

1. Xie H, Chen X, Sheng BQ, Xin ZY, Kong FJ, Lin ZS, et al. Identification of a wheat line YW243 resistance to powdery mildew and genetic analysis. Acta Agron Sin. 2001;27-6:715–21.

2. Li H, Chen X, Xin ZY, Ma YZ, Xu HJ. Development and identification of wheat-Haynaldia villosa 6DL/6VS translocation lines with powdery mildew resistance (in Chinese). Sci Agric Sin. 1999;32(5):9–15.

3. Liu JY, Liu DJ, Tao WJ, Li WL, Chen PD. Study on the conversion of RFLP markers co-segregated with Pm4a to sequenced-tagged-site markers. J Agri Biotech. 1999;7(2):113–6.

4. Schneeberger K, Weigel D. Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci. 2011;16:282–8.

5. Shi W, Eli M, John KM, Mikhail VM. 2b-RAD:a simple and flexible method for genome-wide genotyping. Nat Methods. 2012;9:808–10.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3