Author:
Ai Penghui,Liu Xiaoqi,Li Zhongai,Kang Dongru,Khan Muhammad Ayoub,Li Han,Shi Mengkang,Wang Zicheng
Abstract
Abstract
Background
Flowers of Chrysanthemum × morifolium Ramat. are used as tea in traditional Chinese cuisine. However, with increasing population and urbanization, water and land availability have become limiting for chrysanthemum tea production. Hydroponic culture enables effective, rapid nutrient exchange, while requiring no soil and less water than soil cultivation. Hydroponic culture can reduce pesticide residues in food and improve the quantity or size of fruits, flowers, and leaves, and the levels of active compounds important for nutrition and health. To date, studies to improve the yield and active compounds of chrysanthemum have focused on soil culture. Moreover, the molecular effects of hydroponic and soil culture on chrysanthemum tea development remain understudied.
Results
Here, we studied the effects of soil and hydroponic culture on yield and total flavonoid and chlorogenic acid contents in chrysanthemum flowers (C. morifolium ‘wuyuanhuang’). Yield and the total flavonoids and chlorogenic acid contents of chrysanthemum flowers were higher in the hydroponic culture system than in the soil system. Transcriptome profiling using RNA-seq revealed 3858 differentially expressed genes (DEGs) between chrysanthemum flowers grown in soil and hydroponic conditions. Gene Ontology (GO) enrichment annotation revealed that these differentially transcribed genes are mainly involved in “cytoplasmic part”, “biosynthetic process”, “organic substance biosynthetic process”, “cell wall organization or biogenesis” and other processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed enrichment in “metabolic pathways”, “biosynthesis of secondary metabolites”, “ribosome”, “carbon metabolism”, “plant hormone signal transduction” and other metabolic processes. In functional annotations, pathways related to yield and formation of the main active compounds included phytohormone signaling, secondary metabolism, and cell wall metabolism. Enrichment analysis of transcription factors also showed that under the hydroponic system, bHLH, MYB, NAC, and ERF protein families were involved in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction.
Conclusions
Hydroponic culture is a simple and effective way to cultivate chrysanthemum for tea production. A transcriptome analysis of chrysanthemum flowers grown in soil and hydroponic conditions. The large number of DEGs identified confirmed the difference of the regulatory machinery under two culture system.
Publisher
Springer Science and Business Media LLC
Reference94 articles.
1. Dai SL, Wang WK, Huang JP. Advances of researches on phylogeny of Dendranthema and origin of chrysanthemum. J Beijing Forestry Univ. 2002;24(006):230–4.
2. Du H, Li SS, Wu Q, Ji KX, Wu J, Liu Y, et al. Analysis of active compounds and antioxidant activity assessment of six popular Chinese Juhua teas. Nat Prod Commun. 2015;10(3):495–8.
3. Wu TY, Khor TO, Saw CL, Loh SC, Chen AI, Lim SS, et al. Anti-inflammatory/anti-oxidative stress activities and differential regulation of nrf2-mediated genes by non-polar fractions of tea chrysanthemum zawadskii and licorice Glycyrrhiza uralensis. AAPS J. 2011;13(1):1–13.
4. Li YF, Yang PY, Luo YH, Gao BY, Sun JH, Lu WY, et al. Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties. Food Chem. 2019;15(286):8–16.
5. Chen LX, Hu DJ, Lam SC, Ge L, Wu D, Zhao J, et al. Comparison of antioxidant activities of different parts from snow chrysanthemum (Coreopsis tinctoria Nutt.) and identification of their natural antioxidants using high performance liquid chromatography coupled with diode array detection and mass spectrometry and 2,2 -azinobis (3-ethylbenzthiazoline-sulfonic acid) diammonium salt-based assay. J Chromatogr A. 2016;8(1428):134–42.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献