Author:
Sheteiwy Mohamed S.,Ali Dina Fathi Ismail,Xiong You-Cai,Brestic Marian,Skalicky Milan,Hamoud Yousef Alhaj,Ulhassan Zaid,Shaghaleh Hiba,AbdElgawad Hamada,Farooq Muhammad,Sharma Anket,El-Sawah Ahmed M.
Abstract
Abstract
Background
The present study aims to study the effects of biofertilizers potential of Arbuscular Mycorrhizal Fungi (AMF) and Bradyrhizobium japonicum (B. japonicum) strains on yield and growth of drought stressed soybean (Giza 111) plants at early pod stage (50 days from sowing, R3) and seed development stage (90 days from sowing, R5).
Results
Highest plant biomass, leaf chlorophyll content, nodulation, and grain yield were observed in the unstressed plants as compared with water stressed-plants at R3 and R5 stages. At soil rhizosphere level, AMF and B. japonicum treatments improved bacterial counts and the activities of the enzymes (dehydrogenase and phosphatase) under well-watered and drought stress conditions. Irrespective of the drought effects, AMF and B. japonicum treatments improved the growth and yield of soybean under both drought (restrained irrigation) and adequately-watered conditions as compared with untreated plants. The current study revealed that AMF and B. japonicum improved catalase (CAT) and peroxidase (POD) in the seeds, and a reverse trend was observed in case of malonaldehyde (MDA) and proline under drought stress. The relative expression of the CAT and POD genes was up-regulated by the application of biofertilizers treatments under drought stress condition. Interestingly a reverse trend was observed in the case of the relative expression of the genes involved in the proline metabolism such as P5CS, P5CR, PDH, and P5CDH under the same conditions. The present study suggests that biofertilizers diminished the inhibitory effect of drought stress on cell development and resulted in a shorter time for DNA accumulation and the cycle of cell division. There were notable changes in the activities of enzymes involved in the secondary metabolism and expression levels of GmSPS1, GmSuSy, and GmC-INV in the plants treated with biofertilizers and exposed to the drought stress at both R3 and R5 stages. These changes in the activities of secondary metabolism and their transcriptional levels caused by biofertilizers may contribute to increasing soybean tolerance to drought stress.
Conclusions
The results of this study suggest that application of biofertilizers to soybean plants is a promising approach to alleviate drought stress effects on growth performance of soybean plants. The integrated application of biofertilizers may help to obtain improved resilience of the agro ecosystems to adverse impacts of climate change and help to improve soil fertility and plant growth under drought stress.
Publisher
Springer Science and Business Media LLC
Reference87 articles.
1. Neupane J, Guo W. Agronomic basis and strategies for precision water management: a review. Agronomy. 2019;9(2):87. https://doi.org/10.3390/agronomy9020087.
2. Anonymous. Annual report international institute of tropical agriculture. Ibadan, Nigeria; 2000. p. 1–2.
3. Soystats, American Soybean Association. http://soystats.com/ 2015 (accessed Mar 2017) (2015).
4. Buezo J, Sanz-Saez A, Jose MF, Soba D, Aranjuelo I, Esteban R. Drought tolerance response of high-yielding soybean varieties to mild drought: physiological and photochemical adjustments. Physiol Plant. 2019;166(1):88–104. https://doi.org/10.1111/ppl.12864.
5. Sheteiwy MS, Shao H, Qi W, Daly P, Sharma A, Shaghaleh H, et al. Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max, L.) seedlings. J Sci Food and Agric. 2020;2020:1–15.
Cited by
147 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献