A novel sucrose transporter gene IbSUT4 involves in plant growth and response to abiotic stress through the ABF-dependent ABA signaling pathway in Sweetpotato

Author:

Wang Dandan,Liu Hongjuan,Wang Hongxia,Zhang Peng,Shi Chunyu

Abstract

Abstract Background To maintain sweetpotato (Ipomoea batatas (L.) Lam) growth and yield, sucrose must be transported from the leaves to the roots. Sucrose transporters or carriers (SUTs or SUCs) transport sucrose and are involved in plant growth and response to abiotic stress. However, the mechanisms of SUTs in sweetpotato abiotic stress resistance remains to be determined. Results In the present study, we cloned a novel IbSUT4 gene; the protein encoded by this gene is localized in the tonoplast and plasma membrane. The plant growth was promoted in the IbSUT4 transgenic Arabidopsis thaliana lines, with increased expression of AtFT, a regulator of flowering time in plants. Over-expression of IbSUT4 in Arabidopsis thaliana resulted in higher sucrose content in the roots and lower sucrose content in the leaves, as compared to the wild-type (WT) plants, leading to improved stress tolerance during seedling growth. Moreover, we systematically analyzed the mechanisms of IbSUT4 in response to abiotic stress. The results suggest that the ABRE-motif was localized in the IbSUT4 promoter region, and the expression of the ABA signaling pathway genes (i.e., ABF2, ABF4, SnRK2.2, SnRK2.3, and PYL8/RCAR3) were induced, and the expression of ABI1 was inhibited. Conclusions Our dates provide evidence that IbSUT4 is not only involved in plant growth but also is an important positive regulator in plant stress tolerance through the ABF-dependent ABA signaling pathway.

Funder

National Natural Science Foundation of China Youth Fund

Shandong Agriculture Innovation Team

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3