Physiological and transcriptomic analysis reveals the potential mechanism of Morinda officinalis How in response to freezing stress

Author:

Luo Zhenhua,Che Xiaoying,Han Panpan,Chen Zien,Chen Zeyu,Chen Jinfang,Xiang Sishi,Ding Ping

Abstract

Abstract Background Morinda officinalis How (MO) is a vine shrub distributed in tropical and subtropical regions, known as one of the “Four Southern Herbal Medicines” in China. The unclear responsive mechanism by which MO adapt to freezing stress limits progress in molecular breeding for MO freezing tolerance. Results In this study, morphological, physiological and microstructure changes in MO exposed to -2℃ for 0 h, 3 h, 8 h and 24 h were comprehensively characterized. The results showed that freezing stress caused seedling dehydration, palisade cell and spongy mesophyll destruction. A significant increase in the content of proline, soluble protein and soluble sugars, as well as the activity of superoxide dismutase and peroxidase was observed. Subsequently, we analyzed the transcriptomic changes of MO leaves at different times under freezing treatment by RNA-seq. A total of 24,498 unigenes were annotated and 3252 unigenes were identified as differentially expressed genes (DEGs). Most of these DEGs were annotated in starch and sucrose metabolism, plant hormone signal transduction and MAPK signaling pathways. Family Enrichment analysis showed that the glucosyl/glucuronosyl transferases, oxidoreductase, chlorophyll a/b binding protein and calcium binding protein families were significantly enriched. We also characterized 7 types of transcription factors responding to freezing stress, among which the most abundant family was the MYBs, followed by the AP2/ERFs and NACs. Furthermore, 10 DEGs were selected for qRT-PCR analysis, which validated the reliability and accuracy of RNA-seq data. Conclusions Our results provide an overall view of the dynamic changes in physiology and insight into the molecular regulation mechanisms of MO in response to freezing stress. This study will lay a foundation for freezing tolerance molecular breeding and improving the quality of MO.

Funder

Guangzhou Key R&D Project

Guangdong Provincial Rural Revitalization Strategy Special Project

Guangdong Agricultural Science and Technology Innovation and Promotion Project

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3