Author:
Li Guangrong,Tang Lingrong,Yin Yan,Zhang Ahui,Yu Zhihui,Yang Ennian,Tang Zongxiang,Fu Shulan,Yang Zujun
Abstract
Abstract
Background
Introgression of chromatin from Secale species into common wheat has for decades been a successful strategy for controlling the wheat diseases. The wild Secale species, Secale africanum Stapf., is a valuable source for resistance to foliar disease of wheat. A wheat-S. africanum chromosome 6Rafr substitution line displayed resistance to both powdery mildew and stripe rust at the adult-plant stage.
Results
Wheat-S. africanum chromosome 6Rafr deletion and translocation lines were produced and identified by sequential non-denaturing fluorescence in situ hybridization (ND-FISH) using multiple Oligo-based probes. Different ND-FISH patterns were observed between S. cereale 6R and S. africanum 6Rafr. With reference to the physical map of the draft genome sequence of rye inbred line Lo7, a comprehensive PCR marker analysis indicated that insertions and deletions had occurred by random exchange between chromosomes 6R and 6Rafr. A survey of the wheat- S. africanum 6Rafr lines for disease resistance indicated that a powdery mildew resistance gene(s) was present on the long arm of 6Rafr at FL0.85–1.00, and that a stripe rust resistance gene(s) was located in the terminal region of 6RafrS at FL0.95–1.00. The wheat-S. africanum 6Rafr introgression lines also displayed superior agronomic traits, indicating that the chromosome 6Rafr may have little linkage drag in the wheat background.
Conclusions
The combination of molecular and cytogenetic methods allowed to precisely identify the chromosome rearrangements in wheat- S. africanum 6Rafr substitution, deletion and translocation lines, and compare the structural difference between chromosomes 6R and 6Rafr. The wheat- S. africanum 6Rafr lines containing gene(s) for powdery mildew and stripe rust resistance could be used as novel germplasm for wheat breeding by chromosome engineering.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Morgounov A, Tufan HA, Sharma R, Akin B, Bagci A, Braun HJ, Kaya Y, Keser M, Payne TS, Sonder K, McIntosh R. Global incidence of wheat rusts and powdery mildew during 1969-2010 and durability of resistance of winter wheat variety Bezostaya 1. Eur J Plant Pathol. 2012;132:323–40.
2. Schwessinger B. Fundamental wheat stripe rust research in the 21st century. New Phytol. 2017;213:1625–31.
3. Tan C, Li G, Cowger C, Carver BF, Xu X. Characterization of Pm63, a powdery mildew resistance gene in Iranian landrace PI 628024. Theor Appl Genet. 2019;132:1137–44.
4. Nsabiyera V, Bariana HS, Qureshi N, Wong D, Hayden MJ, Bansal UK. Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284. Theor Appl Genet. 2018;131:1459–67.
5. McIntosh RA, Dubcovsky J, Rogers WJ, Xia XC, Raupp WJ. Catalogue of gene symbols for wheat: 2018-19 supplement. Ann Wheat Newsl. 2018;64:73–93.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献