Author:
Adhikari Laxman,Makaju Shiva O.,Lindstrom Orville M.,Missaoui Ali M.
Abstract
Abstract
Background
Winter freezing temperature impacts alfalfa (Medicago sativa L.) persistence and seasonal yield and can lead to the death of the plant. Understanding the genetic mechanisms of alfalfa freezing tolerance (FT) using high-throughput phenotyping and genotyping is crucial to select suitable germplasm and develop winter-hardy cultivars. Several clones of an alfalfa F1 mapping population (3010 x CW 1010) were tested for FT using a cold chamber. The population was genotyped with SNP markers identified using genotyping-by-sequencing (GBS) and the quantitative trait loci (QTL) associated with FT were mapped on the parent-specific linkage maps. The ultimate goal is to develop non-dormant and winter-hardy alfalfa cultivars that can produce extended growth in the areas where winters are often mild.
Results
Alfalfa FT screening method optimized in this experiment comprises three major steps: clone preparation, acclimation, and freezing test. Twenty clones of each genotype were tested, where 10 samples were treated with freezing temperature, and 10 were used as controls. A moderate positive correlation (r ~ 0.36, P < 0.01) was observed between indoor FT and field-based winter hardiness (WH), suggesting that the indoor FT test is a useful indirect selection method for winter hardiness of alfalfa germplasm. We detected a total of 20 QTL associated with four traits; nine for visual rating-based FT, five for percentage survival (PS), four for treated to control regrowth ratio (RR), and two for treated to control biomass ratio (BR). Some QTL positions overlapped with WH QTL reported previously, suggesting a genetic relationship between FT and WH. Some favorable QTL from the winter-hardy parent (3010) were from the potential genic region for a cold tolerance gene CBF. The BLAST alignment of a CBF sequence of M. truncatula, a close relative of alfalfa, against the alfalfa reference showed that the gene’s ortholog resides around 75 Mb on chromosome 6.
Conclusions
The indoor freezing tolerance selection method reported is useful for alfalfa breeders to accelerate breeding cycles through indirect selection. The QTL and associated markers add to the genomic resources for the research community and can be used in marker-assisted selection (MAS) for alfalfa cold tolerance improvement.
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. Leep R, Andresen J, Jeranyama P. Fall dormancy and snow depth effects on winterkill of alfalfa, vol 93. 2001.
2. Bélanger G, et al., Winter damage to perennial forage crops in eastern Canada: Causes, mitigation, and prediction, vol. 86. 2006.
3. Castonguay Y, et al. An indoor screening method for improvement of freezing tolerance in alfalfa. Crop Sci. 2009;49(3):809–18.
4. Lindstrom O, Dirr M. Acclimation and low-temperature tolerance of eight woody taxa. HortScience. 1989;24(5):818–20.
5. Castonguay Y, et al. Molecular physiology and breeding at the crossroads of cold hardiness improvement. Physiol Plant. 2013;147(1):64-74.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献