Adaptive strategies based on shrub leaf-stem anatomy and their environmental interpretations in the eastern Qaidam Basin

Author:

Liu Siyu,Zheng Jingming

Abstract

Abstract Background Water stress seriously affects the survival of plants in natural ecosystems. Plant resistance to water stress relies on adaptive strategies, which are mainly based on plant anatomy with following relevant functions: (1) increase in water uptake and storage; (2) reduction of water loss; and (3) mechanical reinforcement of tissues. We measured 15 leaf-stem anatomical traits of five dominant shrub species from 12 community plots in the eastern Qaidam Basin to explore adaptive strategies based on plant leaf-stem anatomy at species and community levels. and their relationship with environmental stresses were tested. Results Results showed that the combination of leaf-stem anatomical traits formed three types of adaptive strategies with the drought tolerance of leaf and stem taken as two coordinate axes. Three types of water stress were caused by environmental factors in the eastern Qaidam Basin, and the established adaptive strategy triangle could be well explained by these environmental stresses. The interpretation of the strategic triangle was as follows: (1) exploitative plant strategy, in which leaf and stem adopt the hydraulic efficiency strategy and safety strategy, respectively. This strategy is mostly applied to plants in sandy desert (i.e., Nitraria tangutorum, and Artemisia sphaerocephala) which is mainly influenced by drought stress; (2) stable plant strategy, in which both leaf/assimilation branches and stem adopt hydraulic safety strategy. This strategy is mostly applied to plants in salty desert (i.e., Kalidium foliatum and Haloxylon ammodendron) which aridity has little effect on them; and (3) opportunistic plant strategy, in which leaf and stem adopt hydraulic safety strategy and water transport efficiency strategy. This strategy is mostly applied to plants in multiple habitats (i.e., Sympegma regelii) which is mainly affected by coldness stress. Conclusion The proposed adaptive strategy system could provide a basis for elucidating the ecological adaptation mechanism of desert woody plants and the scientific management of natural vegetation in the Qinghai-Tibet Plateau.

Funder

the Second Tibetan Plateau Scientific Expedition and Research Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3