Author:
Xie Die,Hao Ming,Zhao Laibin,Chen Xue,Chen Xuejiao,Jiang Bo,Ning Shunzong,Yuan Zhongwei,Zhang Lianquan,Shu Kai,Zhang Yijing,Liu Dengcai,Wu Peipei
Abstract
Abstract
Background
Weeds are not only economically important but also fascinating models for studying the adaptation of species in human-mediated environments. Aegilops tauschii is the D-genome donor species of common wheat but is also a weed that influences wheat production. How shading stress caused by adjacent wheat plants affects Ae. tauschii growth is a fundamental scientific question but is also important in agriculture, such as for weed control and wheat breeding.
Result
The present study indicated that shade avoidance is a strategy of Ae. tauschii in response to shading stress. Ae. tauschii plants exhibited growth increases in specific organs, such as stem and leaf elongation, to avoid shading. However, these changes were accompanied by sacrificing the growth of other parts of the plants, such as a reduction in tiller number. The two reverse phenotype responses seem to be formed by systemically regulating the expression of different genes. Fifty-six genes involved in the regulation of cell division and cell expansion were found to be downregulated, and one key upstream negative regulator (RPK2) of cell division was upregulated under shading stress. On the other hand, the upregulated genes under shading stress were mainly enriched in protein serine/threonine kinase activity and carbon metabolism, which are associated with cell enlargement, signal transduction and energy supply. The transcription factor WRKY72 may be important in regulating genes in response to shading stress, which can be used as a prior candidate gene for further study on the genetic regulation of shade avoidance.
Conclusions
This study sheds new light on the gene expression changes and molecular processes involved in the response and avoidance of Ae. tauschii to shading stress, which may aid more effective development of shading stress avoidance or cultivars in wheat and other crops in the future.
Funder
National Natural Science Foundation of China
Science & Technology Department of Sichuan Province
Sichuan Provincial Agricultural Department Innovative Research Team
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献