Author:
Song Rong,Yan Bei,Xie Jin,Zhou Li,Xu Rui,Zhou Jia Min,Ji Xiong Hui,Yi Zi Li
Abstract
Abstract
Background
The Polygonatum cyrtonema Hua rhizomes (also known as Rhizoma Polygonati, RP) are consumed for their health benefits. The main source of the RP is wild P. cyrtonema populations in the Hunan province of China. However, the soil Cadmium (Cd) content in Huanan is increasing, thus increasing the risks of Cd accumulation in RP which may end up in the human food chain. To understand the mechanism of Cd accumulation and resistance in P. cyrtonema, we subjected P. cyrtonema plants to four levels of Cd stress [(D2) 1, (D3) 2, (D4) 4, and (D5) 8 mg/kg)] compared to (D1) 0.5 mg/kg.
Results
The increase in soil Cd content up to 4 mg/kg resulted in a significant increase in tissue (root hair, rhizome, stem, and leaf) Cd content. The increase in Cd concentration variably affected the antioxidant enzyme activities. We could identify 14,171 and 12,115 protein groups and peptides, respectively. There were 193, 227, 260, and 163 differentially expressed proteins (DEPs) in D2, D3, D4, and D5, respectively, compared to D1. The number of downregulated DEPs increased with an increase in Cd content up to 4 mg/kg. These downregulated proteins belonged to sugar biosynthesis, amino acid biosynthesis-related pathways, and secondary metabolism-related pathways. Our results indicate that Cd stress increases ROS generation, against which, different ROS scavenging proteins are upregulated in P. cyrtonema. Moreover, Cd stress affected the expression of lipid transport and assembly, glycolysis/gluconeogenesis, sugar biosynthesis, and ATP generation.
Conclusion
These results suggest that an increase in soil Cd content may end up in Huangjing. Cadmium stress initiates expression changes in multiple pathways related to energy metabolism, sugar biosynthesis, and secondary metabolite biosynthesis. The proteins involved in these pathways are potential candidates for manipulation and development of Cd stress-tolerant genotypes.
Funder
National key research and development program of China during the “14th Five-Year Plan"
The Science and Technology Plan Projects of Hunan Province
The Science and Technology development program guided by the central government of Hunan Province
Publisher
Springer Science and Business Media LLC
Reference64 articles.
1. Wang L, Cui X, Cheng H, Chen F, Wang J, Zhao X, Lin C, Pu X. A review of soil cadmium contamination in China including a health risk assessment. Environ Sci Pollut Res. 2015;22(21):16441–52.
2. Yongming L, Ying T. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China. Bull Chin Acad Sci (Chinese Version). 2018;33(2):145–52.
3. Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol Environ Saf. 2021;211:111887.
4. Qadir S, Jamshieed S, Rasool S, Ashraf M, Akram NA, Ahmad P. Modulation of plant growth and metabolism in cadmium-enriched environments. Rev Environ Contam Toxicol. 2014;229:51–88.
5. Lu Z, Zhang Z, Su Y, Liu C, Shi G. Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation. Ecotoxicol Environ Saf. 2013;91:147–55.