Abstract
Abstract
Background
Plant height is an important plant characteristic closely related to yield performance of many crops. Reasonable reduction of plant height of crops is beneficial for improving yield and enhancing lodging resistance.
Results
In the present study, we described the Brassica napus dwarf mutant bnd2 that was isolated using ethyl methanesulfonate (EMS) mutagenesis. Compared to wild type (WT), bnd2 exhibited reduced height and shorter hypocotyl and petiole leaves. By crossing the bnd2 mutant with the WT strain, we found that the ratio of the mutant to the WT in the F2 population was close to 1:3, indicating that bnd2 is a recessive mutation of a single locus. Following bulked segregant analysis (BSA) by resequencing, BND2 was found to be located in the 13.77–18.08 Mb interval of chromosome A08, with a length of 4.31 Mb. After fine mapping with single nucleotide polymorphism (SNP) and insertion/deletion (InDel) markers, the gene was narrowed to a 140-Kb interval ranging from 15.62 Mb to 15.76 Mb. According to reference genome annotation, there were 27 genes in the interval, of which BnaA08g20960D had an SNP type variation in the intron between the mutant and its parent, which may be the candidate gene corresponding to BND2. The hybrid line derived from a cross between the mutant bnd2 and the commercial cultivar L329 had similar plant height but higher grain yield compared to the commercial cultivar, suggesting that the allele bnd2 is beneficial for hybrid breeding of lodging resistant and high yield rapeseed.
Conclusion
In this study, we identified a novel dwarf mutant of rapeseed with a new locus, which may be useful for functional analyses of genetic mechanisms of plant architecture and grain yield in rapeseed.
Funder
the Basic Research Program of Shenzhen Municipal Science and Technology Innovation Committee
the Basic Research Program of Changsha Municipal Science and Technology
Natural Science Foundation of Hunan province
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. Zhu DJ, Zhang H, Huang H, Ning WY, Zhang YC. Effects of different fertilization treatments on yield and economic benefits of rape at different soil fertility levels. Jiangsu Agricultural Science. 2013;41(10):73–6.
2. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, et al. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet. 2011;43(10):1035–40.
3. Bayer PE, Hurgobin B, Golicz AA, Chan CK, Yuan Y, Lee HT, Renton M, Meng J, Li R, Long Y, Zou J, Bancroft I, Chalhoub B, King GJ, Batley J, Edwards D. Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol J. 2017;15(12):1602–10.
4. Foisset N, Delourme R, Barret P, Renard M. Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theor Appl Genet. 1995;91(5):756–61.
5. Zeng, XH: Comparing effrctiveness of different mutagens for seed quality and analysis of mutants in Brassica napus. http://www.hzau.edu.cn/ (2010). Accessed 1 Dec 2010.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献