Author:
Shu Xinyue,Wang Aijun,Jiang Bo,Jiang Yuqi,Xiang Xing,Yi Xiaoqun,Li Shuangcheng,Deng Qiming,Wang Shiquan,Zhu Jun,Liang Yueyang,Liu Huainian,Zou Ting,Wang Lingxia,Li Ping,Zheng Aiping
Abstract
Abstract
Background
Rice (Oryza sativa) bacterial leaf blight (BLB), caused by the hemibiotrophic Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases affecting the production of rice worldwide. The development and use of resistant rice varieties or genes is currently the most effective strategy to control BLB.
Results
Here, we used 259 rice accessions, which are genotyped with 2 888 332 high-confidence single nucleotide polymorphisms (SNPs). Combining resistance variation data of 259 rice lines for two Xoo races observed in 2 years, we conducted a genome-wide association study (GWAS) to identify quantitative trait loci (QTL) conferring plant resistance against BLB. The expression levels of genes, which contains in GWAS results were also identified between the resistant and susceptible rice lines by transcriptome analysis at four time points after pathogen inoculation. From that 109 candidate resistance genes showing significant differential expression between resistant and susceptible rice lines were uncovered. Furthermore, the haplotype block structure analysis predicted 58 candidate genes for BLB resistance based on Chr. 7_707158 with a minimum P-value (–log 10 P = 9.72). Among them, two NLR protein-encoding genes, LOC_Os07g02560 and LOC_Os07g02570, exhibited significantly high expression in the resistant line, but had low expression in the susceptible line of rice.
Conclusions
Together, our results reveal novel BLB resistance gene resources, and provide important genetic basis for BLB resistance breeding of rice crops.
Funder
Key Project of Sichuan Department of Science and Technology
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference67 articles.
1. Chen W, Gao Y, Xie W, Gong L, Lu K, Wang WS, et al. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet. 2014;46(7):714–21.
2. Nino-Liu DO, Ronald PC, Bogdanove AJ. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol. 2010;7(5):303–24.
3. Khush GS, Mackill DJ, Sidhu GS. Breeding rice for resistance to bacterial blight. In: Banta SJ, editor. Bacterial blight of rice. Los Banos: International Rice Research Institute; 1989. p. 207–17.
4. Zhang Q. Genetic evaluation and utilization of resistance to rice bacterial blight in China. Sci Agric Sin. 1991;24(2):26–36.
5. Saha S, Garg R, Biswas A, Rai A. Bacterial diseasesof rice: an overview. J Pure Appl Microbiol. 2015;9:725–36.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献