Low levels of Al stimulate the aboveground growth of Davidia involucrata saplings

Author:

Wang Jun,Guo Jiong,Yang Houqi,Deng Xinqi,Zhang Chunyan

Abstract

AbstractDavidia involucrata is a woody perennial and the only living species in the Genus Davidia. It is native to southern China where it holds cultural and scientific importance. However, D. involucrata is now an endangered species and its natural range includes low pH soils which are increasingly impacted by acid rain, nitrogen deposition and imbalanced nutrient cycling. The combination of these stresses also poses the additional risk of aluminum (Al) toxicity. Since the responses of D. involucrata to low pH and aluminum toxicity have not been investigated previously, a hydroponic experiment was conducted to examine the growth of one year old D. involucrata saplings after 50 d growth in a range of pH and Al conditions. Plant biomass, morphology, antioxidant enzyme activity, mineral concentrations and plant ecological strategy were compared at pH 5.8 and pH 4.0 without added Al (AlCl3) and in 0.1, 0.2 and 0.5 mM Al at pH 4.0. Our results showed that compared with pH 5.8, pH 4.0 (without added Al) not only inhibited root and shoot growth but also limited accumulation of nitrogen (N) and phosphorus (P) in leaves of D. involucrate. However, low Al concentrations (0.1 and 0.2 mM Al) at pH 4.0 partially restored the aboveground growth and leaf N concentrations, suggesting an alleviation of H+ toxicity by low Al concentrations. Compared with low Al concentrations, 0.5 mM Al treatment decreased plant growth and concentrations of N, P, and magnesium (Mg) in the leaves, which demonstrated the toxicity of high Al concentration. The results based on plant ecological strategy showed that D. involucrate decreased the competitiveness and favored its stress tolerance as pH changed from 5.8 to 4.0. Meanwhile, the competitiveness and stress tolerance of D. involucrata increased and decreased at low Al concentrations, respectively, and decreased and increased at high Al concentration, respectively. These trade-offs in ecological strategy were consistent with the responses of growth and antioxidant enzyme activity, reflecting a sensitive adaptation of D. involucrata to acid and Al stresses, which may aid in sustaining population dynamics. These findings are meaningful for understanding the population dynamics of D. involucrata in response to aluminum toxicity in acid soils.

Funder

Sichuan Science and Technology Program

Fundamental Research Funds of China West Normal University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3