Wheat stripe rust resistance locus YR63 is a hot spot for evolution of defence genes – a pangenome discovery

Author:

Mackenzie Amy,Norman Michael,Gessese Mesfin,Chen Chunhong,Sørensen Chris,Hovmøller Mogens,Ma Lina,Forrest Kerrie,Hickey Lee,Bariana Harbans,Bansal Urmil,Periyannan Sambasivam

Abstract

Abstract Background Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a threat to global wheat production. Deployment of widely effective resistance genes underpins management of this ongoing threat. This study focused on the mapping of stripe rust resistance gene YR63 from a Portuguese hexaploid wheat landrace AUS27955 of the Watkins Collection. Results YR63 exhibits resistance to a broad spectrum of Pst races from Australia, Africa, Asia, Europe, Middle East and South America. It was mapped to the short arm of chromosome 7B, between two single nucleotide polymorphic (SNP) markers sunCS_YR63 and sunCS_67, positioned at 0.8 and 3.7 Mb, respectively, in the Chinese Spring genome assembly v2.1. We characterised YR63 locus using an integrated approach engaging targeted genotyping-by-sequencing (tGBS), mutagenesis, resistance gene enrichment and sequencing (MutRenSeq), RNA sequencing (RNASeq) and comparative genomic analysis with tetraploid (Zavitan and Svevo) and hexaploid (Chinese Spring) wheat genome references and 10+ hexaploid wheat genomes. YR63 is positioned at a hot spot enriched with multiple nucleotide-binding and leucine rich repeat (NLR) and kinase domain encoding genes, known widely for defence against pests and diseases in plants and animals. Detection of YR63 within these gene clusters is not possible through short-read sequencing due to high homology between members. However, using the sequence of a NLR member we were successful in detecting a closely linked SNP marker for YR63 and validated on a panel of Australian bread wheat, durum and triticale cultivars. Conclusions This study highlights YR63 as a valuable source for resistance against Pst in Australia and elsewhere. The closely linked SNP marker will facilitate rapid introgression of YR63 into elite cultivars through marker-assisted selection. The bottleneck of this study reinforces the necessity for a long-read sequencing such as PacBio or Oxford Nanopore based techniques for accurate detection of the underlying resistance gene when it is part of a large gene cluster.

Funder

Grains Research and Development Corporation

University of Queensland

University of Sydney

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3