Abstract
Abstract
Background
5-Aminolevulinic acid (ALA) is a natural and environmentally benign multifunctional plant growth regulator involved in the regulation of plant tolerance to various environmental stresses. This research aimed to explore the molecular mechanisms of salt tolerance in Populus wutunensis induced by exogenous ALA using physiological and transcriptomic analyses.
Results
Physiological results showed that 50 mg·L− 1 ALA-treatment significantly reduced the malondialdehyde (MDA) content and the relative electrical conductivity (REC) and enhanced antioxidant activities of enzymes such as SOD, POD and CAT in salt-stressed P. wutunensis seedlings. Transcriptome analysis identified ALA-induced differentially expressed genes (DEGs) associating with increased salt-tolerance in P. wutunensis. GO and KEGG enrichment analyses showed that ALA activated the jasmonic acid signaling and significantly enhanced the protein processing in endoplasmic reticulum and the flavonoid biosynthesis pathways. Results of the hormone-quantification by LC-MS/MS-based assays showed that ALA could increase the accumulation of methyl jasmonate (MeJA) in salt-stressed P. wutunensis. Induced contents of soluble proteins and flavonoids by exogenous ALA in salt-treated seedlings were also correlated with the MeJA content.
Conclusion
5-aminolevulinic acid improved the protein-folding efficiency in the endoplasmic reticulum and the flavonoid-accumulation through the MeJA-activated jasmonic acid signaling, thereby increased salt-tolerance in P. wutunensis.
Funder
The National Natural Science Foundation
The Introduction of Talent Research Start-up fund of Dalian Minzu University
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献