Comparative transcriptome profiling of resistant and susceptible foxtail millet responses to Sclerospora graminicola infection

Author:

Wang He,Han Yanqing,Wu Caijuan,Zhang Baojun,Zhao Yaofei,Zhu Jiao,Han Yuanhuai,Wang Jianming

Abstract

Abstract Background Downy mildew of foxtail millet, which is caused by the biotrophic oomycete Sclerospora graminicola (Sacc.) Schroeter, is one of the most disruptive diseases. The foxtail millet-S. graminicola interaction is largely unexplored. Transcriptome sequencing technology can help to reveal the interaction mechanism between foxtail millet and its pathogens. Results Transmission electron microscopy observations of leaves infected with S. graminicola showed that the structures of organelles in the host cells gradually became deformed and damaged, or even disappeared from the 3- to 7-leaf stages. However, organelles in the leaves of resistant variety were rarely damaged. Moreover, the activities of seven cell wall degrading enzymes in resistant and susceptible varieties were also quite different after pathogen induction and most of enzymes activities were significantly higher in the susceptible variety JG21 than in the resistant variety G1 at all stages. Subsequently, we compared the transcriptional profiles between the G1 and JG21 in response to S. graminicola infection at 3-, 5-, and 7-leaf stages using RNA-Seq technology. A total of 473 and 1433 differentially expressed genes (DEGs) were identified in the resistant and susceptible varieties, respectively. The pathway analysis of the DEGs showed that the highly enriched categories were related to glutathione metabolism, plant hormone signalling, phenylalanine metabolism, and cutin, suberin and wax biosynthesis. Some defence-related genes were also revealed in the DEGs, including leucine-rich protein kinase, Ser/Thr protein kinase, peroxidase, cell wall degrading enzymes, laccases and auxin response genes. Our results also confirmed the linkage of transcriptomic data with qRT-PCR data. In particular, LRR protein kinase encoded by Seita.8G131800, Ser/Thr protein kinase encoded by Seita.2G024900 and Seita. 2G024800, which have played an essential resistant role during the infection by S. graminicola. Conclusions Transcriptome sequencing revealed that host resistance to S. graminicola was likely due to the activation of defence-related genes, such as leucine-rich protein kinase and Ser/Thr protein kinase. Our study identified pathways and genes that contribute to the understanding of the interaction between foxtail millet and S. graminicola at the transcriptomic level. The results will help us better understand the resistance mechanism of foxtail millet against S. graminicola.

Funder

General Projects of Basic Research Plan of Shanxi Province

Science and Technology Innovation Fund of Shanxi Agricultural University

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3