Abstract
Abstract
Background
Citrus fruits are consumed freshly or as juice to directly provide various dietary flavonoids to humans. Diverse metabolites are present among Citrus genera, and many flavonoids biosynthetic genes were induced after abiotic stresses. To better understand the underlying mechanism, we designed experiments to overexpress a UDP-GLUCOSYL TRANSFERASE gene from sweet orange (Citrus sinensis) to evaluate its possible function in metabolism and response to stress.
Results
Our results demonstrated that overexpression of Cs-UGT78D3 resulted in high accumulation of proanthocyanidins in the seed coat and a dark brown color to transgenic Arabidopsis seeds. In addition, the total contents of flavonoid and anthocyanin were significantly enhanced in the leaves of overexpressed lines. Gene expression analyses indicated that many flavonoid (flavonol) and anthocyanin genes were up-regulated by 4–15 folds in transgenic Arabidopsis. Moreover, after 14 days of high light stress, the transgenic Arabidopsis lines showed strong antioxidant activity and higher total contents of anthocyanins and flavonoids in leaves compared with the wild type.
Conclusion
Our study concluded that the citrus Cs-UGT78D3 gene contributes to proanthocyanidins accumulation in seed coats and confers tolerance to high light stress by accumulating the total anthocyanin and flavonoid contents with better antioxidant potential (due to photoprotective activity of anthocyanin) in the transgenic Arabidopsis.
Funder
National key research and development program
National Natural Science Foundation of China
Science and Technology Major Project of Guangxi
Publisher
Springer Science and Business Media LLC
Reference69 articles.
1. Tripoli E, La Guardia M, Giammanco S, Di Majo D, Giammanco M. Citrus flavonoids: molecular structure, biological activity and nutritional properties: a review. Food Chem. 2007;104:466–79.
2. Huang D, Wang X, Tang Z, Yuan Y, Xu Y, He J, et al. Subfunctionalization of the Ruby2–Ruby1 gene cluster during the domestication of citrus. Nat Plants. 2018;4:930–41. https://doi.org/10.1038/s41477-018-0287-6.
3. Andersen OM, Markham KR. Flavonoids: chemistry, biochemistry and applications. Boca Raton: Taylor & Francis: CRC Press; 2005.
4. Kaur H, Heinzel N, Schöttner M, Baldwin IT, Gális I. R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiol. 2010;152:1731–47.
5. Luo J, Butelli E, Jones J, Tomlinson L, Martin CR. Methods and compositions for modifying plant flavonoid composition and disease resistance. 2009; http://europepmc.org/patents/PAT/WO2009103960. Accessed 27 Aug 2009.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献