Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress

Author:

Attaran Dowom Samaneh,Karimian Zahra,Mostafaei Dehnavi Mahboubeh,Samiei Leila

Abstract

Abstract Background The use of organic nanoparticles to improve drought resistance and water demand characteristics in plants seems to be a promising eco-friendly strategy for water resource management in arid and semi-arid areas. This study aimed to investigate the effect of chitosan nanoparticles (CNPs) (0, 30, 60 and 90 ppm) on some physiological, biochemical, and anatomical responses of Salvia abrotanoides under multiple irrigation regimes (30% (severe), 50% (medium) and 100% (control) field capacity). Results The results showed that drought stress decreases almost all biochemical parameters. However, foliar application of CNPs mitigated the effects caused by drought stress. This elicitor decreased electrolyte conductivity (35%), but improved relative water content (12.65%), total chlorophyll (63%), carotenoids (68%), phenol (23.1%), flavonoid (36.4%), soluble sugar (58%), proline (49%), protein (45.2%) in S. abrotanoides plants compared to the control (CNPs = 0). Furthermore, the activity of antioxidant enzymes superoxide dismutase (86%), polyphenol oxidase (72.8%), and guaiacol peroxidase (75.7%) were enhanced after CNPs treatment to reduce the effects of water deficit. Also, the CNPs led to an increase in stomatal density (5.2 and 6.6%) while decreasing stomatal aperture size (50 and 25%) and semi-closed stomata (26 and 53%) in leaves. Conclusion The findings show that CNPs not only can considerably reduce water requirement of S. abrotanoides but also are able to enhance the drought tolerance ability of this plant particularly in drought-prone areas. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3