Systematic identification of miRNA-regulatory networks unveils their potential roles in sugarcane response to Sorghum mosaic virus infection

Author:

Su Yachun,Peng Qiong,Ling Hui,You Chuihuai,Wu Qibin,Xu Liping,Que Youxiong

Abstract

Abstract Background Sugarcane mosaic disease (SMD) is a major viral disease of sugarcane (Saccharum spp.) worldwide. Sorghum mosaic virus (SrMV) is the dominant pathogen of SMD in the sugarcane planting areas of China. There is no report on miRNAs and their regulatory networks in sugarcane response to SrMV infection. Results In this study, small RNA sequencing (sRNA-seq) of samples from the leaves of SMD-susceptible variety ROC22 and -resistant variety FN39 infected by SrMV was performed. A total of 132 mature miRNAs (55 known miRNAs and 77 novel miRNAs) corresponding to 1,037 target genes were identified. After the SrMV attack, there were 30 differentially expressed miRNAs (17 up-regulated and 13 down-regulated) in FN39 and 19 in ROC22 (16 up-regulated and 3 down-regulated). Besides, there were 18 and 7 variety-specific differentially expressed miRNAs for FN39 and ROC22, respectively. KEGG enrichment analysis showed that the differentially expressed miRNAs targeted genes involved in several disease resistance-related pathways, such as mRNA surveillance, plant pathway interaction, sulfur metabolism, and regulation of autophagy. The reliability of sequencing data, and the expression patterns / regulation relationships between the selected differentially expressed miRNAs and their target genes in ROC22 and FN39 were confirmed by quantitative real-time PCR. A regulatory network diagram of differentially expressed miRNAs and their predicted target genes in sugarcane response to SrMV infection was sketched. In addition, precursor sequences of three candidate differentially expressed novel miRNAs (nov_3741, nov_22650 and nov_40875) were cloned from the ROC22 leaf infected by SrMV. Transient overexpression demonstrated that they could induce the accumulation of hydrogen peroxide and the expression level of hypersensitive response marker genes, salicylic acid-responsive genes and ethylene synthesis-depended genes in Nicotiana benthamiana. It is thus speculated that these three miRNAs may be involved in regulating the early immune response of sugarcane plants following SrMV infection. Conclusions This study lays a foundation for revealing the miRNA regulation mechanism in the interaction of sugarcane and SrMV, and also provides a resource for miRNAs and their predicted target genes for SrMV resistance improvement in sugarcane.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3