Identification and characterization of An-4, a potential quantitative trait locus for awn development in rice

Author:

Qin Baoxiang,Lu Taian,Xu Yibo,Shen Wei,Liu Fang,Xie Xuyang,Li Yunzhen,Wang Kejian,Li Rongbai

Abstract

Abstract Background Awn of rice is an important domestication trait closely associated with yield traits. Therefore, the identification of genes for awn development is of great significance for the elucidation of molecular mechanism of awn development and the genetic improvement of yield traits in rice. Results In this study, using chromosome segment substitution lines (CSSLs) derived from a long-awned Guangxi common wild rice (GXCWR, Oryza rufipogon Griff.) and a short-awned indica cultivar 9311, we identified An-4, a potential quantitative trait locus (QTL) for awn development. Then, An-4 was fine mapped into a 56-kb region of chromosome 2, which contained four annotated genes. Among these four annotated genes, Os02g0594800 was concluded to be the potential candidate gene for An-4. An-4 exhibited pleiotropic effects on awn development and several yield traits. Scanning electron microscopy (SEM) analysis showed that An-4 significantly promoted awn development at Sp7 and Sp8 stage of spikelet development. Transcriptome analysis suggested that An-4 might influence the development of awn by regulating the expression of genes related to growth, developmental process, channel regulation and extracellular region. By contrast to those of 9311, the expression level of OsRR5 in CSSL128 was significantly down-regulated, whereas the expression levels of OsCKX2 and OsGA2ox5 in CSSL128 were significantly up-regulated. In addition, our study showed that An-4 had additive effects with other genes for awn development, such as An-1, An-2/LABA1 and An-3/GAD1/RAE2. Conclusions The identification of An-4 lays a foundation for cloning of An-4 and further elucidation of the molecular mechanism of awn development. Moreover, the identification of favorable allelic variation of An-4 from 9311 will be useful to improve rice yield traits.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3