Author:
Shi Jianzhi,Wang Wenlei,Lin Yinghui,Xu Kai,Xu Yan,Ji Dehua,Chen Changsheng,Xie Chaotian
Abstract
Abstract
Background
Pyropia haitanensis, distributes in the intertidal zone, can tolerate water losses exceeding 90%. However, the mechanisms enabling P. haitanensis to survive harsh conditions remain uncharacterized. To elucidate the mechanism underlying P. haitanensis desiccation tolerance, we completed an integrated analysis of its transcriptome and proteome as well as transgenic Chlamydomonas reinhardtii carrying a P. haitanensis gene.
Results
P. haitanensis rapidly adjusted its physiological activities to compensate for water losses up to 60%, after which, photosynthesis, antioxidant systems, chaperones, and cytoskeleton were activated to response to severe desiccation stress. The integrative analysis suggested that transketolase (TKL) was affected by all desiccation treatments. Transgenic C. reinhardtii cells overexpressed PhTKL grew better than the wild-type cells in response to osmotic stress.
Conclusion
P. haitanensis quickly establishes acclimatory homeostasis regarding its transcriptome and proteome to ensure its thalli can recover after being rehydrated. Additionally, PhTKL is vital for P. haitanensis desiccation tolerance. The present data may provide new insights for the breeding of algae and plants exhibiting enhanced desiccation tolerance.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province
Agriculture Research System of China
Publisher
Springer Science and Business Media LLC
Reference70 articles.
1. Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH. Porphyra: a marine crop shaped by stress. Trends Plant Sci. 2011;16(1):29–37.
2. FAO. Fisheries and aquaculture-fisheries and aquaculture fact sheets. URL (
http://www.fao.org/fishery/factsheets/en
.) (accessed 2 Aug 2017).
3. Kellogg J, Lila MA. Chemical and in vitro assessment of Alaskan coastal vegetation antioxidant capacity. J Agric Food Chem. 2013;61(46):11025–32.
4. China Fishery Bureau, Fishery Production, China Fishery Statistical Yearbook (in Chinese), Chinese Agriculture Express (2016).
5. Xie J, Xu Y, Ji D, Chen C, Xie C. Physiological response of the antioxidant system in Pyropia haitanensis to desiccation stress (in Chinese). J Fish Sci Chin. 2014;21(2):405–12.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献