Author:
Lin Ruoyi,Zheng Jiexuan,Pu Lin,Wang Zhengfeng,Mei Qiming,Zhang Mei,Jian Shuguang
Abstract
Abstract
Background
Canavalia rosea (Sw.) DC. (bay bean) is an extremophile halophyte that is widely distributed in coastal areas of the tropics and subtropics. Seawater and drought tolerance in this species may be facilitated by aquaporins (AQPs), channel proteins that transport water and small molecules across cell membranes and thereby maintain cellular water homeostasis in the face of abiotic stress. In C. rosea, AQP diversity, protein features, and their biological functions are still largely unknown.
Results
We describe the action of AQPs in C. rosea using evolutionary analyses coupled with promoter and expression analyses. A total of 37 AQPs were identified in the C. rosea genome and classified into five subgroups: 11 plasma membrane intrinsic proteins, 10 tonoplast intrinsic proteins, 11 Nod26-like intrinsic proteins, 4 small and basic intrinsic proteins, and 1 X-intrinsic protein. Analysis of RNA-Seq data and targeted qPCR revealed organ-specific expression of aquaporin genes and the involvement of some AQP members in adaptation of C. rosea to extreme coral reef environments. We also analyzed C. rosea sequences for phylogeny reconstruction, protein modeling, cellular localizations, and promoter analysis. Furthermore, one of PIP1 gene, CrPIP1;5, was identified as functional using a yeast expression system and transgenic overexpression in Arabidopsis.
Conclusions
Our results indicate that AQPs play an important role in C. rosea responses to saline-alkaline soils and drought stress. These findings not only increase our understanding of the role AQPs play in mediating C. rosea adaptation to extreme environments, but also improve our knowledge of plant aquaporin evolution more generally.
Publisher
Springer Science and Business Media LLC
Reference63 articles.
1. Supriya P, Sridhar KR. Impact of electron beam irradiation on the bioactive principles of seeds of coastal sand dune wild legumes (Canavalia Spp.). Recent Pat Food Nutr Agric. 2019;10(1):57–61.
2. Huang J, Liu N, Ren H, Jian SG. Physiology and biochemical characteristics of Canavalia rosea under stress. J Trop&Subtrop Bot. 2019;27(02):157–63.
3. Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006;45:523–39.
4. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–81.
5. Kaldenhoff R, Ribas-Carbo M, Sans JF, Lovisolo C, Heckwolf M, Uehlein N. Aquaporins and plant water balance. Plant Cell Environ. 2008;31(5):658–66.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献