Genetic diversity and population structure of the endangered species Paeonia decomposita endemic to China and implications for its conservation

Author:

Wang Shi-Quan

Abstract

Abstract Background Paeonia decomposita, endemic to China, has important ornamental, medicinal, and economic value and is regarded as an endangered plant. The genetic diversity and population structure have seldom been described. A conservation management plan is not currently available. Results In the present study, 16 pairs of simple sequence repeat (SSR) primers were used to evaluate the genetic diversity and population structure. A total of 122 alleles were obtained with a mean of 7.625 alleles per locus. The expected heterozygosity (He) varied from 0.043 to 0.901 (mean 0.492) in 16 primers. Moderate genetic diversity (He = 0.405) among populations was revealed, with Danba identified as the center of genetic diversity. Mantel tests revealed a positive correlation between geographic and genetic distance among populations (r = 0.592, P = 0.0001), demonstrating consistency with the isolation by distance model. Analysis of molecular variance (AMOVA) indicated that the principal molecular variance existed within populations (73.48%) rather than among populations (26.52%). Bayesian structure analysis and principal coordinate analysis (PCoA) supported the classification of the populations into three clusters. Conclusions This is the first study of the genetic diversity and population structure of P. decomposita using SSR. Three management units were proposed as conservation measures. The results will be beneficial for the conservation and exploitation of the species, providing a theoretical basis for further research of its evolution and phylogeography.

Funder

National Natural Science Foundation of China

Hainan Provincial Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference80 articles.

1. Stern FC. A study of the genus Paeonia. London: The Royal Horticultural Society; 1946.

2. Hong DY. Peonies of the world: taxonomy and phytogeography. London, St. Louis: Royal Botanical Gardens Kew Publishing, Kew & Missouri Botanical Garden Press; 2010.

3. Cheng FY. Advances in the breeding of tree peonies and a cultivar system for the cultivar group. Int J Plant Sci. 2007;1:89–104.

4. Zhang YL, Han XY, Niu LX, Zhang J, He LX. Analysis of fatty acid in seed oil from nine wild peony species. J Chin Cereals Oils Assoc. 2015;30:72–9.

5. Yang Y, Luo JT, Zhang BF, Song HX, Liu GL, Zeng XL. Studies on floral characteristics and breeding system of Paeonia decomposita. J Plant Resour Environ. 2015;24:97–104.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3