Metabolic differences of two constructive species in saline-alkali grassland in China

Author:

Chen Qi,Xie Huansong,Wei Guanyun,Guo Xiaorui,Zhang Jian,Lu Xueyan,Tang Zhonghua

Abstract

Abstract Background Salinization of soil is an urgent problem that restricts agroforestry production and environmental protection. Substantial accumulation of metal ions or highly alkaline soil alters plant metabolites and may even cause plant death. To explore the differences in the response strategies between Suaeda salsa (S. salsa) and Puccinellia tenuiflora (P. tenuiflora), two main constructive species that survive in saline-alkali soil, their metabolic differences were characterized. Result Metabolomics was conducted to study the role of metabolic differences between S. salsa and P. tenuiflora under saline-alkali stress. A total of 68 significantly different metabolites were identified by GC-MS, including 9 sugars, 13 amino acids, 8 alcohols, and 34 acids. A more detailed analysis indicated that P. tenuiflora utilizes sugars more effectively and may be saline-alkali tolerant via sugar consumption, while S. salsa utilizes mainly amino acids, alcohols, and acids to resist saline-alkali stress. Measurement of phenolic compounds showed that more C6C3C6-compounds accumulated in P. tenuiflora, while more C6C1-compounds, phenolic compounds that can be used as signalling molecules to defend against stress, accumulated in S. salsa. Conclusions Our observations suggest that S. salsa resists the toxicity of saline-alkali stress using aboveground organs and that P. tenuiflora eliminates this toxicity via roots. S. salsa has a stronger habitat transformation ability and can provide better habitat for other plants.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3