‘Fertile island’ effects on the soil microbial community beneath the canopy of Tetraena mongolica, an endangered and dominant shrub in the West Ordos Desert, North China

Author:

Liu Zhangkai,Shao Yuying,Cui Qingguo,Ye Xuehua,Huang Zhenying

Abstract

Abstract Background The fertile islands formed by shrubs are major drivers of the structure and function of desert ecosystems, affecting seedling establishment, plant–plant interactions, the diversity and productivity of plant communities, and microbial activity/diversity. Although an increasing number of studies have shown the critical importance of soil microbes in fertile island formation, how soil microbial community structure and function are affected by the different fertile island effect intensities is still unknown. As an endangered and dominant shrub species in the West Ordos Desert, Tetraena mongolica was selected for further exploration of its fertile island effect on the soil microbial community in the present study to test the following two hypotheses: (1) T. mongolica shrubs with different canopy sizes exert fertile island effects of different strengths; (2) the soil microbial community structure and function beneath the T. mongolica canopy are affected by the fertile island, and the strength of these effects varies depending on the shrub canopy size. Results The contents of soil total nitrogen (TN) and available phosphorus (AVP) were significantly greater beneath T. mongolica shrub canopy than outside the shrub canopy. With increasing shrub canopy size, the enrichment of soil TN and AVP increased, indicating a stronger fertile island effect. The structure and function of soil microbial communities, including fungal, archaeal and bacterial communities, are affected by the fertile island effect. An increase in canopy size increased the relative abundance of Ascomycota (Fungi) and Thaumarchaeota (Archaea). For the soil microbial functional groups, the relative abundance of endophytes in the fungal functional groups; steroid hormone biosynthesis, sphingolipid metabolism, and steroid biosynthesis genes in the bacterial functional groups; and nonhomologous end-joining and bisphenol degradation functional genes in the archaeal functional groups increased significantly with increasing T. mongolica canopy size. Conclusions These results revealed that T. mongolica had a fertile island effect, which affected the soil microbial community structure and functions, and that the fertile island effect might increase with increasing shrub canopy size. The fertile island effect may strengthen the interaction between T. mongolica shrubs and microbes, which may be beneficial to the growth and maintenance of T. mongolica.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3