Heterologous expression of Arabidopsis thaliana rty gene in strawberry (Fragaria × ananassa Duch.) improves drought tolerance

Author:

Li Maofu,Yang Yuan,Raza Ali,Yin Shanshan,Wang Hua,Zhang Yuntao,Dong Jing,Wang Guixia,Zhong Chuanfei,Zhang Hong,Liu Jiashen,Jin WanmeiORCID

Abstract

Abstract Background Strawberry (Fragaria × ananassa Duch.) is an important fruit crop worldwide. It was particularly sensitive to drought stress because of their fibrous and shallow root systems. Mutant rty of Arabidopsis thaliana ROOTY (RTY) results in increased endogenous auxin levels, more roots, and shoot growth. It is still unclear whether the rty gene improves stress tolerance in strawberry. Results rty gene was isolated from Arabidopsis thaliana and placed under the control of the cauliflower mosaic virus (CaMV) 35S promoter in the pBI121-rty binary vector carrying the selectable marker of neomycin phosphotransferase II (NPT II). Seven transgenic lines were confirmed by PCR and western blot analysis. Accumulations of IAA and ABA were significantly increased in the transgenic plants. The endogenous IAA contents were 46.5 ng g− 1 and 66.0 ng g− 1in control and transgenic plants respectively. The endogenous ABA contents in the control plant were 236.3 ng g− 1 and in transgenic plants were 543.8 ng g− 1. The production of adventitious roots and trichomes were enhanced in the transgenic plants. Furthermore, transcript levels of the genes including IAA and ABA biosynthetic, and stress-responsive genes, were higher in the transgenic plants than in the control plants under drought conditions. Water use efficiency and a reduced water loss rate were enhanced in the transgenic strawberry plants. Additionally, peroxidase and catalase activities were significantly higher in the transgenic plants than in the control plants. The experiment results revealed a novel function for rty related to ABA and drought responses. Conclusions The rty gene improved hormone-mediated drought tolerance in transgenic strawberry. The heterologous expression of rty in strawberry improved drought tolerance by promoting auxin and ABA accumulation. These phytohormones together brought about various physiological changes that improved drought tolerance via increased root production, trichome density, and stomatal closure. Our results suggested that a transgenic approach can be used to overcome the inherent trade-off between plant growth and drought tolerance by enhancing water use efficiency and reducing water loss rate under water shortage conditions.

Funder

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference92 articles.

1. Jones AM, Im KH, Savka MA, Wu MJ, DeWitt NG, Shillito R, Binns AN. Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science. 1998;282(5391):1114–7.

2. Calderon Villalobos LI, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard LB, Tan X, Parry G, Mao H, et al. A combinatorial TIR1/AFB-aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol. 2012;8(5):477–85.

3. Charlton W. Lateral root initiation. Plant roots, the hidden half. 1996;24:149–73.

4. Davies PJ. “Plant hormones, physiology, biochemistry and molecular biology,”. Netherlands: Springer Science & Business Media; 2013.

5. Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM. Formation of lateral root meristems is a two-stage process. Development. 1995;121(10):3303–10.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3