Author:
Fei Jianbo,Lu Jianyu,Jiang Qingping,Liu Zhibo,Yao Dan,Qu Jing,Liu Siyan,Guan Shuyan,Ma Yiyong
Abstract
Abstract
Background
The plant architecture traits of maize determine the yield. Plant height, ear position, leaf angle above the primary ear and internode length above the primary ear together determine the canopy structure and photosynthetic efficiency of maize and at the same time affect lodging and disease resistance. A flat and tall plant architecture confers an obvious advantage in the yield of a single plant but is not conducive to dense planting and results in high rates of lodging; thus, it has been gradually eliminated in production. Although using plants that are too compact, short and density tolerant can increase the yield per unit area to a certain extent, the photosynthetic efficiency of such plants is low, ultimately limiting yield increases. Genetic mapping is an effective method for the improvement of plant architecture to identify candidate genes for regulating plant architecture traits.
Results
To find the best balance between the yield per plant and the yield per unit area of maize, in this study, the F2:3 pedigree population and a RIL population with the same male parent were used to identify QTL for plant height (PH), ear height (EH), leaf angle and internode length above the primary ear (LAE and ILE) in Changchun and Gongzhuling for 5 consecutive years (2016–2020). A total of 11, 13, 23 and 13 QTL were identified for PH, EH, LAE, and ILE, respectively. A pleiotropic consistent QTL for PH overlapped with that for EH on chromosome 3, with a phenotypic variation explanation rate from 6.809% to 21.96%. In addition, there were major consistent QTL for LAE and ILE, and the maximum phenotypic contribution rates were 24.226% and 30.748%, respectively. Three candidate genes were mined from the three consistent QTL regions and were involved in the gibberellin-activated signal pathway, brassinolide signal transduction pathway and auxin-activated signal pathway, respectively. Analysis of the expression levels of the three genes showed that they were actively expressed during the jointing stage of vigorous maize growth.
Conclusions
In this study, three consistent major QTL related to plant type traits were identified and three candidate genes were screened. These results lay a foundation for the cloning of related functional genes and marker-assisted breeding of related functional genes.
Funder
Science and Technology Project of Jilin Provincial Department of Education
Jilin Province Science and Technology Development Plan Project
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献