Author:
Abdel-Aty M.S.,Sorour F. A.,Yehia W. M. B.,Kotb H. M. K.,Abdelghany Ahmed M.,Lamlom Sobhi F.,Shah Adnan Noor,Abdelsalam Nader R.
Abstract
AbstractIt is crucial to understand how targeted traits in a hybrid breeding program are influenced by gene activity and combining ability. During the three growing seasons of 2015, 2016, and 2017, a field study was conducted with twelve cotton genotypes, comprised of four testers and eight lines. Thirty-two F1 crosses were produced in the 2015 breeding season using the line x tester mating design. The twelve genotypes and their thirty-two F1 crosses were then evaluated in 2016 and 2017. The results demonstrated highly significant differences among cotton genotypes for all the studied traits, showing a wide range of genetic diversity in the parent genotypes. Additionally, the line-x-tester interaction was highly significant for all traits, suggesting the impact of both additive and non-additive variations in gene expression. Furthermore, the thirty-two cotton crosses showed high seed cotton output, lint cotton yield, and fiber quality, such as fiber length values exceeding 31 mm and a fiber strength above 10 g/tex. Accordingly, selecting lines and testers with high GCA effects and crosses with high SCA effects would be an effective approach to improve the desired traits in cotton and develop new varieties with excellent yield and fiber quality.
Funder
The Science, Technology & Innovation Funding Authority
Publisher
Springer Science and Business Media LLC
Reference96 articles.
1. Yehia W, El-Hashash EF. Estimates of genetic parameters for cotton yield, its components, and fiber quality traits based on line x tester mating design and principal component analysis. Egyptian Journal of Agricultural Research. 2022;100(3):302–15.
2. El-Aty A, Hamoud H, Omar A, Turkey HS. Estimation of genetic variability in some cotton crosses (Gossypium Barbadense l.) Under water stress. J Plant Prod. 2012;3(6):1017–26.
3. Fasoula DA, Fasoula VA. Gene action and plant breeding. Plant Breeding Reviews. 1997;15:315–74.
4. Geng X, Sun G, Qu Y, Sarfraz Z, Jia Y, He S, Pan Z, Sun J, Iqbal MS, Wang Q. Genome-wide dis The Plant Journalsection of hybridization for fiber quality-and yield-related traits in upland cotton. Plant J. 2020;104(5):1285–300.
5. Sprague GF, Tatum L. General vs. specific combining ability in single crosses of corn. J Am Soc Agronomy. 1942;14(10):923–32.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献