Modulation of defense genes and phenolic compounds in wild blueberry in response to Botrytis cinerea under field conditions

Author:

Abbey Joel,Jose Sherin,Percival David,Jaakola Laura,Asiedu Samuel K.

Abstract

AbstractBotrytis blight is an important disease of wild blueberry [(Vaccinium angustifolium (Va) and V. myrtilloides (Vm))] with variable symptoms in the field due to differences in susceptibility among blueberry phenotypes. Representative blueberry plants of varying phenotypes were inoculated with spores of B. cinerea. The relative expression of pathogenesis-related genes (PR3, PR4), flavonoid biosynthesis genes, and estimation of the concentration of ten phenolic compounds between uninoculated and inoculated samples at different time points were analyzed. Representative plants of six phenotypes (brown stem Va, green stem Va, Va f. nigrum, tall, medium, and short stems of Vm) were collected and studied using qRT-PCR. The expression of targeted genes indicated a response of inoculated plants to B. cinerea at either 12, 24, 48 or 96 h post inoculation (hpi). The maximum expression of PR3 occurred at 24 hpi in all the phenotypes except Va f. nigrum and tall stem Vm. Maximum expression of both PR genes occurred at 12 hpi in Va f. nigrum. Chalcone synthase, flavonol synthase and anthocyanin synthase were suppressed at 12 hpi followed by an upregulation at 24 hpi. The expression of flavonoid pathway genes was phenotype-specific with their regulation patterns showing temporal differences among the phenotypes. Phenolic compound accumulation was temporally regulated at different post-inoculation time points. M-coumaric acid and kaempferol-3-glucoside are the compounds that were increased with B. cinerea inoculation. Results from this study suggest that the expression of PR and flavonoid genes, and the accumulation of phenolic compounds associated with B. cinerea infection could be phenotype specific. This study may provide a starting point for understanding and determining the mechanisms governing the wild blueberry-B. cinerea pathosystem.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference67 articles.

1. Jones D, Percival D. Trends in lowbush blueberry cultivar development. J Am Pomol Soc. 2003;57(2):63.

2. Tirmenstein D. accinium myrtilloides. In: Fire Effects Information System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory; 1990. https://www.fs.fed.us/database/feis/plants/shrub/vacmyt/all.html. Accessed 21 Oct 2021.

3. [AAFC] Agriculture and Agri-Food Canada. Crop profile for lowbush blueberry in Canada, 2014. Catalogue No. A118–10/31–2014E-PDF. AAFC No. 12595E; 2017. https://publications.gc.ca/site/eng/9.829861/publication.html. Accessed 20 Sept 2021.

4. Percival D. (2013). Wild blueberry yield potential and canopy management strategies. Paper presented at: Annual Meeting of the Wild Blueberry Producers Association of Nova Scotia; 2013. http://www.researchgate.net/publication/258821362. Accessed 20 Sept 2021.

5. Hildebrand PD, McRae KB, Lu X. Factors affecting flower infection and disease severity of lowbush blueberry by Botrytiscinerea. Can J Plant Pathol. 2001;23(4):364–70. https://doi.org/10.1080/07060660109506957.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3