Comprehensive analysis of complete chloroplast genome and phylogenetic aspects of ten Ficus species

Author:

Huang Yuying,Li Jing,Yang Zerui,An Wenli,Xie Chunzhu,Liu Shanshan,Zheng Xiasheng

Abstract

Abstract Background The large genus Ficus comprises approximately 800 species, most of which possess high ornamental and ecological values. However, its evolutionary history remains largely unknown. Plastome (chloroplast genome) analysis had become an essential tool for species identification and for unveiling evolutionary relationships between species, genus and other rank groups. In this work we present the plastomes of ten Ficus species. Results The complete chloroplast (CP) genomes of eleven Ficus specimens belonging to ten species were determined and analysed. The full length of the Ficus plastome was nearly 160 kbp with a similar overall GC content, ranging from 35.88 to 36.02%. A total of 114 unique genes, distributed in 80 protein-coding genes, 30 tRNAs, and 4 rRNAs, were annotated in each of the Ficus CP genome. In addition, these CP genomes showed variation in their inverted repeat regions (IR). Tandem repeats and mononucleotide simple sequence repeat (SSR) are widely distributed across the Ficus CP genome. Comparative genome analysis showed low sequence variability. In addition, eight variable regions to be used as potential molecular markers were proposed for future Ficus species identification. According to the phylogenetic analysis, these ten Ficus species were clustered together and further divided into three clades based on different subgenera. Simultaneously, it also showed the relatedness between Ficus and Morus. Conclusion The chloroplast genome structure of 10 Ficus species was similar to that of other angiosperms, with a typical four-part structure. Chloroplast genome sizes vary slightly due to expansion and contraction of the IR region. And the variation of noncoding regions of the chloroplast genome is larger than that of coding regions. Phylogenetic analysis showed that these eleven sampled CP genomes were divided into three clades, clustered with species from subgenus Urostigma, Sycomorus, and Ficus, respectively. These results support the Berg classification system, in which the subgenus Ficus was further decomposed into the subgenus Sycomorus. In general, the sequencing and analysis of Ficus plastomes, especially the ones of species with no or limited sequences available yet, contribute to the study of genetic diversity and species evolution of Ficus, while providing useful information for taxonomic and phylogenetic studies of Ficus.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference89 articles.

1. Berg CC. Classification and distribution of Ficus. Experientia. 1989;45(7):605–11. https://doi.org/10.1007/BF01975677.

2. Berg CC, Corner EJH. Moraceae (Ficus). Flora malesiana. series I, volume 17. Nooteboom HP. eds. National herbarium Nederland, Universiteit Leiden branch, The Netherlands. 2005:1–702.

3. Seraia AS, Tsybulia NV, Dul’tseva GG. Role of some species of Ficus in amelioration of environment. Aviakosm Ekolog Med. 2008;42(4):66–70 (PMID: 19140478).

4. Harrison R. Figs and the diversity of tropical rainforests. Bioscience. 2009;55:1053–64. https://doi.org/10.1641/0006-3568(2005)055[1053:FATDOT]2.0.CO;2.

5. Barolo MI, Ruiz Mostacero N, López SN. Ficus carica L. (Moraceae): An ancient source of food and health. Food Chemistry. 2014;164:119–27. https://doi.org/10.1016/j.foodchem.2014.04.112.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3