Transcriptomic and metabolomic analyses reveal how girdling promotes leaf color expression in Acer rubrum L

Author:

Yangyang Yan,Qin Liu,Kun Yan,Xiaoyi Wang,Pei Xu

Abstract

Abstract Background Acer rubrum L. (red maple) is a popular tree with attractive colored leaves, strong physiological adaptability, and a high ornamental value. Changes in leaf color can be an adaptive response to changes in environmental factors, and also a stress response to external disturbances. In this study, we evaluated the effect of girdling on the color expression of A. rubrum leaves. We studied the phenotypic characteristics, physiological and biochemical characteristics, and the transcriptomic and metabolomic profiles of leaves on girdled and non-girdled branches of A. rubrum. Results Phenotypic studies showed that girdling resulted in earlier formation of red leaves, and a more intense red color in the leaves. Compared with the control branches, the girdled branches produced leaves with significantly different color parameters a*. Physiological and biochemical studies showed that girdling of branches resulted in uneven accumulation of chlorophyll, carotenoids, anthocyanins, and other pigments in leaves above the band. In the transcriptomic and metabolomic analyses, 28,432 unigenes including 1095 up-regulated genes and 708 down-regulated genes were identified, and the differentially expressed genes were mapped to various KEGG (kyoto encyclopedia of genes and genomes) pathways. Six genes encoding key transcription factors related to anthocyanin metabolism were among differentially expressed genes between leaves on girdled and non-girdled branches. Conclusions Girdling significantly affected the growth and photosynthesis of red maple, and affected the metabolic pathways, biosynthesis of secondary metabolites, and carbon metabolisms in the leaves. This resulted in pigment accumulation in the leaves above the girdling site, leading to marked red color expression in those leaves. A transcriptome analysis revealed six genes encoding anthocyanin-related transcription factors that were up-regulated in the leaves above the girdling site. These transcription factors are known to be involved in the regulation of phenylpropanoid biosynthesis, anthocyanin biosynthesis, and flavonoid biosynthesis. These results suggest that leaf reddening is a complex environmental adaptation strategy to maintain normal metabolism in response to environmental changes. Overall, the results of these comprehensive phenotype, physiological, biochemical, transcriptomic, and metabolomic analyses provide a deeper and more reliable understanding of the coevolution of red maple leaves in response to environmental changes.

Funder

Ecosystem Services and Valuation of the Ecological Belt Around the Chengdu City

The Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference47 articles.

1. Rachel A, Peter R. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content. Plants, 2015:4(3):505–522.

2. Yun Z, Yves B, Xiu-Hai Z, et al. Stand history is more important than climate in controlling red maple (Acer rubrum L.) growth at its northern distribution limit in western Quebec, Canada. J Plant Ecol. 2015:8(4):368.

3. Jian Z. The overview of technique research on Acer rubrum of American colorful-leaf trees. J Guangxi Agriculture. 2009.

4. Ren J, Zeng-Cheng D, F Tang, et al. A New Acer rubrum Cultivar ‘Jinmaihong’. Acta Horticulturae Sinica, 2013.

5. Ferreyra MLF, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci. 2012;3:1–15.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3