GhAAO2 was observed responding to NaHCO3 stress in cotton compared to AAO family genes

Author:

Liu Xiaoyu,Cui Yupeng,Kang Ruiqin,Zhang Hong,Huang Hui,Lei Yuqian,Fan Yapeng,Zhang Yuexin,Wang Jing,Xu Nan,Han Mingge,Feng Xixian,Ni Kesong,Jiang Tiantian,Rui Cun,Sun Liangqing,Chen Xiugui,Lu Xuke,Wang Delong,Wang Junjuan,Wang Shuai,Zhao Lanjie,Guo Lixue,Chen Chao,Chen Quanjia,Ye Wuwei

Abstract

Abstract Background Abscisic acid (ABA) is an important stress hormone, the changes of abscisic acid content can alter plant tolerance to stress, abscisic acid is crucial for studying plant responses to abiotic stress. The abscisic acid aldehyde oxidase (AAO) plays a vital role in the final step in the synthesis of abscisic acid, therefore, understanding the function of AAO gene family is of great significance for plants to response to abiotic stresses. Result In this study, 6, 8, 4 and 4 AAO genes were identified in four cotton species. According to the structural characteristics of genes and the traits of phylogenetic tree, we divided the AAO gene family into 4 clades. Gene structure analysis showed that the AAO gene family was relatively conservative. The analysis of cis-elements showed that most AAO genes contained cis-elements related to light response and plant hormones. Tissue specificity analysis under NaHCO3 stress showed that GhAAO2 gene was differentially expressed in both roots and leaves. After GhAAO2 gene silencing, the degree of wilting of seedlings was lighter than that of the control group, indicating that GhAAO2 could respond to NaHCO3 stress. Conclusions In this study, the AAO gene family was analyzed by bioinformatics, the response of GhAAO gene to various abiotic stresses was preliminarily verified, and the function of the specifically expressed gene GhAAO2 was further verified. These findings provide valuable information for the study of potential candidate genes related to plant growth and stress.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3