Dynamic transcriptome and network-based analysis of yellow leaf mutant Ginkgo biloba

Author:

Sun Yue,Bai Pan-Pan,Gu Kai-Jie,Yang Shao-Zong,Lin Han-Yang,Shi Cong-Guang,Zhao Yun-Peng

Abstract

Abstract Background Golden leaf in autumn is a prominent feature of deciduous tree species like Ginkgo biloba L., a landscape tree widely cultivated worldwide. However, little was known about the molecular mechanisms of leaf yellowing, especially its dynamic regulatory network. Here, we performed a suite of comparative physiological and dynamic transcriptional analyses on the golden-leaf cultivar and the wild type (WT) ginkgo to investigate the underlying mechanisms of leaf yellowing across different seasons. Results In the present study, we used the natural bud mutant cultivar with yellow leaves “Wannianjin” (YL) as materials. Physiological analysis revealed that higher ratios of chlorophyll a to chlorophyll b and carotenoid to chlorophyll b caused the leaf yellowing of YL. On the other hand, dynamic transcriptome analyses showed that genes related to chlorophyll metabolism played key a role in leaf coloration. Genes encoding non-yellow coloring 1 (NYC1), NYC1-like (NOL), and chlorophyllase (CLH) involved in the degradation of chlorophyll were up-regulated in spring. At the summer stage, down-regulated HEMA encoding glutamyl-tRNA reductase functioned in chlorophyll biosynthesis, while CLH involved in chlorophyll degradation was up-regulated, causing a lower chlorophyll accumulation. In carotenoid metabolism, genes encoding zeaxanthin epoxidase (ZEP) and 9-cis-epoxy carotenoid dioxygenase (NCED) showed significantly different expression levels in the WT and YL. Moreover, the weighted gene co-expression network analysis (WGCNA) suggested that the most associated transcriptional factor, which belongs to the AP2/ERF-ERF family, was engaged in regulating pigment metabolism. Furthermore, quantitative experiments validated the above results. Conclusions By comparing the golden-leaf cultivar and the wide type of ginkgo across three seasons, this study not only confirm the vital role of chlorophyll in leaf coloration of YL but also provided new insights into the seasonal transcriptome landscape and co-expression network. Our novel results pinpoint candidate genes for further wet-bench experiments in tree species.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3