Identification of two recessive etiolation genes (py1, py2) in pakchoi (Brassica rapa L. ssp. chinensis)

Author:

Zhang Kun,Mu Yu,Li Weijia,Shan Xiaofei,Wang Nan,Feng Hui

Abstract

Abstract Background Leaf color is a major agronomic trait, which has a strong influence on crop yields. Isolating leaf color mutants can represent valuable materials for research in chlorophyll (Chl) biosynthesis and metabolism regulation. Results In this study, we identified a stably inherited yellow leaf mutant derived from ‘Huaguan’ pakchoi variety via isolated microspore culture and designated as pylm. This mutant displayed yellow leaves after germination. Its etiolated phenotype was nonlethal and stable during the whole growth period. Its growth was weak and its hypocotyls were markedly elongated. Genetic analysis revealed that two recessive nuclear genes, named py1 and py2, are responsible for the etiolation phenotype. Bulked segregant RNA sequencing (BSR-Seq) showed that py1 and py2 were mapped on chromosomes A09 and A07, respectively. The genes were single Mendelian factors in F3:4 populations based on a 3:1 phenotypic segregation ratio. The py1 was localized to a 258.3-kb interval on a 34-gene genome. The differentially expressed gene BraA09004189 was detected in the py1 mapping region and regulated heme catabolism. One single-nucleotide polymorphism (SNP) of BraA09004189 occurred in pylm. A candidate gene-specific SNP marker in 1520 F3:4 yellow-colored individuals co-segregated with py1. For py2, 1860 recessive homozygous F3:4 individuals were investigated and localized py2 to a 4.4-kb interval. Of the five genes in this region, BraA07001774 was predicted as a candidate for py2. It encoded an embryo defective 1187 and a phosphotransferase related to chlorophyll deficiency and hypocotyl elongation. One SNP of BraA07001774 occurred in pylm. It caused a single amino acid mutation from Asp to Asn. According to quantitative real-time polymerase chain reaction (qRT-PCR), BraA07001774 was downregulated in pylm. Conclusions Our study identified a Chl deficiency mutant pylm in pakchoi. Two recessive nuclear genes named py1 and py2 had a significant effect on etiolation. Candidate genes regulating etiolation were identified as BraA09004189 and BraA07001774, respectively. These findings will elucidate chlorophyll metabolism and the molecular mechanisms of the gene interactions controlling pakchoi etiolation.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3