Integrative transcriptomics reveals association of abscisic acid and lignin pathways with cassava whitefly resistance

Author:

Nye Danielle G.,Irigoyen Maria L.,Perez-Fons Laura,Bohorquez-Chaux Adriana,Hur Manhoi,Medina-Yerena Diana,Lopez-Lavalle Luis Augusto Becerra,Fraser Paul D.,Walling Linda L.

Abstract

Abstract Background Whiteflies are a global threat to crop yields, including the African subsistence crop cassava (Manihot esculenta). Outbreaks of superabundant whitefly populations throughout Eastern and Central Africa in recent years have dramatically increased the pressures of whitefly feeding and virus transmission on cassava. Whitefly-transmitted viral diseases threaten the food security of hundreds of millions of African farmers, highlighting the need for developing and deploying whitefly-resistant cassava. However, plant resistance to whiteflies remains largely poorly characterized at the genetic and molecular levels. Knowledge of cassava-defense programs also remains incomplete, limiting characterization of whitefly-resistance mechanisms. To better understand the genetic basis of whitefly resistance in cassava, we define the defense hormone- and Aleurotrachelus socialis (whitefly)-responsive transcriptome of whitefly-susceptible (COL2246) and whitefly-resistant (ECU72) cassava using RNA-seq. For broader comparison, hormone-responsive transcriptomes of Arabidopsis thaliana were also generated. Results Whitefly infestation, salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) transcriptome responses of ECU72 and COL2246 were defined and analyzed. Strikingly, SA responses were largely reciprocal between the two cassava genotypes and we suggest candidate regulators. While susceptibility was associated with SA in COL2246, resistance to whitefly in ECU72 was associated with ABA, with SA-ABA antagonism observed. This was evidenced by expression of genes within the SA and ABA pathways and hormone levels during A. socialis infestation. Gene-enrichment analyses of whitefly- and hormone-responsive genes suggest the importance of fast-acting cell wall defenses (e.g., elicitor recognition, lignin biosynthesis) during early infestation stages in whitefly-resistant ECU72. A surge of ineffective immune and SA responses characterized the whitefly-susceptible COL2246’s response to late-stage nymphs. Lastly, in comparison with the model plant Arabidopsis, cassava’s hormone-responsive genes showed striking divergence in expression. Conclusions This study provides the first characterization of cassava’s global transcriptome responses to whitefly infestation and defense hormone treatment. Our analyses of ECU72 and COL2246 uncovered possible whitefly resistance/susceptibility mechanisms in cassava. Comparative analysis of cassava and Arabidopsis demonstrated that defense programs in Arabidopsis may not always mirror those in crop species. More broadly, our hormone-responsive transcriptomes will also provide a baseline for the cassava community to better understand global responses to other yield-limiting pests/pathogens.

Funder

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3