Transcriptome analysis reveals key genes involved in the regulation of nicotine biosynthesis at early time points after topping in tobacco (Nicotiana tabacum L.)

Author:

Qin Yan,Bai Shenglong,Li Wenzheng,Sun Ting,Galbraith David W.,Yang Zefeng,Zhou Yun,Sun GuilingORCID,Wang Bingwu

Abstract

Abstract Background Nicotiana tabacum is an important economic crop. Topping, a common agricultural practice employed with flue-cured tobacco, is designed to increase leaf nicotine contents by increasing nicotine biosynthesis in roots. Many genes are found to be differentially expressed in response to topping, particularly genes involved in nicotine biosynthesis, but comprehensive analyses of early transcriptional responses induced by topping are not yet available. To develop a detailed understanding of the mechanisms regulating nicotine biosynthesis after topping, we have sequenced the transcriptomes of Nicotiana tabacum roots at seven time points following topping. Results Differential expression analysis revealed that 4830 genes responded to topping across all time points. Amongst these, nine gene families involved in nicotine biosynthesis and two gene families involved in nicotine transport showed significant changes during the immediate 24 h period following topping. No obvious preference to the parental species was detected in the differentially expressed genes (DEGs). Significant changes in transcript levels of nine genes involved in nicotine biosynthesis and phytohormone signal transduction were validated by qRT-PCR assays. 549 genes encoding transcription factors (TFs), found to exhibit significant changes in gene expression after topping, formed 15 clusters based on similarities of their transcript level time-course profiles. 336 DEGs involved in phytohormone signal transduction, including genes functionally related to the phytohormones jasmonic acid, abscisic acid, auxin, ethylene, and gibberellin, were identified at the earliest time point after topping. Conclusions Our research provides the first detailed analysis of the early transcriptional responses to topping in N. tabacum, and identifies excellent candidates for further detailed studies concerning the regulation of nicotine biosynthesis in tobacco roots.

Funder

National Natural Science Foundation of China

Program for Science and Technology Innovation Talents in Universities of Henan Province

Yunnan Tobacco Company

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3