Mapping of fire blight resistance in Malus ×robusta 5 flowers following artificial inoculation

Author:

Peil AndreasORCID,Hübert Christine,Wensing Annette,Horner Mary,Emeriewen Ofere Francis,Richter Klaus,Wöhner Thomas,Chagné David,Orellana-Torrejon Carolina,Saeed Munazza,Troggio Michela,Stefani Erika,Gardiner Susan E.,Hanke Magda-Viola,Flachowsky Henryk,Bus Vincent G.M.

Abstract

Abstract Background Although the most common path of infection for fire blight, a severe bacterial disease on apple, is via host plant flowers, quantitative trait loci (QTLs) for fire blight resistance to date have exclusively been mapped following shoot inoculation. It is not known whether the same mechanism underlies flower and shoot resistance. Results We report the detection of a fire blight resistance QTL following independent artificial inoculation of flowers and shoots on two F1 segregating populations derived from crossing resistant Malus ×robusta 5 (Mr5) with susceptible ‘Idared’ and ‘Royal Gala’ in experimental orchards in Germany and New Zealand, respectively. QTL mapping of phenotypic datasets from artificial flower inoculation of the ‘Idared’ × Mr5 population with Erwinia amylovora over several years, and of the ‘Royal Gala’ × Mr5 population in a single year, revealed a single major QTL controlling floral fire blight resistance on linkage group 3 (LG3) of Mr5. This QTL corresponds to the QTL on LG3 reported previously for the ‘Idared’ × Mr5 and an ‘M9’ × Mr5 population following shoot inoculation in the glasshouse. Interval mapping of phenotypic data from shoot inoculations of subsets from both flower resistance populations re-confirmed that the resistance QTL is in the same position on LG3 of Mr5 as that for flower inoculation. These results provide strong evidence that fire blight resistance in Mr5 is controlled by a major QTL on LG3, independently of the mode of infection, rootstock and environment. Conclusions This study demonstrates for the first time that resistance to fire blight caused by Erwinia amylovora is independent of the mode of inoculation at least in Malus ×robusta 5.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference60 articles.

1. Hanke M-V, Flachowsky H. Obstzüchtung und wissenschaftliche Grundlagen. Kapitel 13. Apfel (Malus domestica). Berlin: Springer-Verlag; 2017.

2. Winslow CE, Broadhurst J, Buchanan RE, Krumwiede C, Rogers LA, Smith GH. The families and genera of the bacteria: final report of the committee of the society of American bacteriologists on characterization and classification of bacterial types. J Bacteriol. 1920;5(3):191–229.

3. Peil A, Bus VGM, Geider K, Richter K, Flachowsky H, Hanke MV. Improvement of fire blight resistance in apple and pear. Int J Plant Breed. 2009;3:1–27.

4. Russo NL, Robinson TL, Fazio G, Aldwinckle HS. Fire blight resistance of Budagovsky 9 apple rootstock. Plant Dis. 2008;92(3):385–91.

5. Van der Zwet T, Orolaza-Halbrendt N, Zeller W. Fire blight: history, biology, and management. Chapter 3. Losses due to fire blight and economic importance of the disease. Pp 37–41. St. Paul: APS Press/American Phytopathological Society; 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3