Abstract
Abstract
Background
Although the most common path of infection for fire blight, a severe bacterial disease on apple, is via host plant flowers, quantitative trait loci (QTLs) for fire blight resistance to date have exclusively been mapped following shoot inoculation. It is not known whether the same mechanism underlies flower and shoot resistance.
Results
We report the detection of a fire blight resistance QTL following independent artificial inoculation of flowers and shoots on two F1 segregating populations derived from crossing resistant Malus ×robusta 5 (Mr5) with susceptible ‘Idared’ and ‘Royal Gala’ in experimental orchards in Germany and New Zealand, respectively. QTL mapping of phenotypic datasets from artificial flower inoculation of the ‘Idared’ × Mr5 population with Erwinia amylovora over several years, and of the ‘Royal Gala’ × Mr5 population in a single year, revealed a single major QTL controlling floral fire blight resistance on linkage group 3 (LG3) of Mr5. This QTL corresponds to the QTL on LG3 reported previously for the ‘Idared’ × Mr5 and an ‘M9’ × Mr5 population following shoot inoculation in the glasshouse. Interval mapping of phenotypic data from shoot inoculations of subsets from both flower resistance populations re-confirmed that the resistance QTL is in the same position on LG3 of Mr5 as that for flower inoculation. These results provide strong evidence that fire blight resistance in Mr5 is controlled by a major QTL on LG3, independently of the mode of infection, rootstock and environment.
Conclusions
This study demonstrates for the first time that resistance to fire blight caused by Erwinia amylovora is independent of the mode of inoculation at least in Malus ×robusta 5.
Publisher
Springer Science and Business Media LLC
Reference60 articles.
1. Hanke M-V, Flachowsky H. Obstzüchtung und wissenschaftliche Grundlagen. Kapitel 13. Apfel (Malus domestica). Berlin: Springer-Verlag; 2017.
2. Winslow CE, Broadhurst J, Buchanan RE, Krumwiede C, Rogers LA, Smith GH. The families and genera of the bacteria: final report of the committee of the society of American bacteriologists on characterization and classification of bacterial types. J Bacteriol. 1920;5(3):191–229.
3. Peil A, Bus VGM, Geider K, Richter K, Flachowsky H, Hanke MV. Improvement of fire blight resistance in apple and pear. Int J Plant Breed. 2009;3:1–27.
4. Russo NL, Robinson TL, Fazio G, Aldwinckle HS. Fire blight resistance of Budagovsky 9 apple rootstock. Plant Dis. 2008;92(3):385–91.
5. Van der Zwet T, Orolaza-Halbrendt N, Zeller W. Fire blight: history, biology, and management. Chapter 3. Losses due to fire blight and economic importance of the disease. Pp 37–41. St. Paul: APS Press/American Phytopathological Society; 2012.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献