Quantitative proteomic, physiological and biochemical analysis of cotyledon, embryo, leaf and pod reveals the effects of high temperature and humidity stress on seed vigor formation in soybean

Author:

Wei Jiaping,Liu Xiaolin,Li Linzhi,Zhao Haihong,Liu Sushuang,Yu Xingwang,Shen Yingzi,Zhou Yali,Zhu Yajing,Shu Yingjie,Ma Hao

Abstract

Abstract Background Soybean developing seed is susceptible to high temperature and humidity (HTH) stress in the field, resulting in vigor reduction. Actually, the HTH in the field during soybean seed growth and development would also stress the whole plant, especially on leaf and pod, which in turn affect seed growth and development as well as vigor formation through nutrient supply and protection. Results In the present study, using a pair of pre-harvest seed deterioration-sensitive and -resistant cultivars Ningzhen No. 1 and Xiangdou No. 3, the comprehensive effects of HTH stress on seed vigor formation during physiological maturity were investigated by analyzing cotyledon, embryo, leaf, and pod at the levels of protein, ultrastructure, and physiology and biochemistry. There were 247, 179, and 517 differentially abundant proteins (DAPs) identified in cotyledon, embryo, and leaf of cv. Xiangdou No. 3 under HTH stress, while 235, 366, and 479 DAPs were identified in cotyledon, embryo, and leaf of cv. Ningzhen No. 1. Moreover, 120, 144, and 438 DAPs between the two cultivars were identified in cotyledon, embryo, and leaf under HTH stress, respectively. Moreover, 120, 144, and 438 DAPs between the two cultivars were identified in cotyledon, embryo, and leaf under HTH stress, respectively. Most of the DAPs identified were found to be involved in major metabolic pathways and cellular processes, including signal transduction, tricarboxylic acid cycle, fatty acid metabolism, photosynthesis, protein processing, folding and assembly, protein biosynthesis or degradation, plant-pathogen interaction, starch and sucrose metabolism, and oxidative stress response. The HTH stress had less negative effects on metabolic pathways, cell ultrastructure, and physiology and biochemistry in the four organs of Xiangdou No. 3 than in those of Ningzhen No. 1, leading to produce higher vigor seeds in the former. Conclusion High seed vigor formation is enhanced by increasing protein biosynthesis and nutrient storage in cotyledon, stronger stability and viability in embryo, more powerful photosynthetic capacity and nutrient supply in leaf, and stronger protection in pod under HTH stress. These results provide comprehensive characteristics of leaf, pod and seed (cotyledon and embryo) under HTH stress, and some of them can be used as selection index in high seed vigor breeding program in soybean.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3