Author:
Liu Jie,Magige Ephie A.,Fan Peng-Zhen,Wambulwa Moses C.,Luo Ya-Huang,Qi Hai-Ling,Gao Lian-Ming,Milne Richard I.
Abstract
Abstract
Background
Anthropogenic activities are causing unprecedented loss of genetic diversity in many species. However, the effects on genetic diversity from large-scale grafting onto wild plants of crop species are largely undetermined. Iron walnut (Juglans sigillata Dode) is a deciduous nut tree crop endemic to southwestern China with a long history of cultivation. Due to the rapid expansion of the walnut industry, many natural populations are now being replaced by cultivars grafted onto wild rootstocks. However, little is known about the potential genetic consequences of such action on natural populations.
Results
We sampled the scion and the rootstock from each of 149 grafted individuals within nine wild populations of J. sigillata from Yunnan Province which is the center of walnut diversity and cultivation in China, and examined their genetic diversity and population structure using 31 microsatellite loci. Scions had lower genetic diversity than rootstocks, and this pattern was repeated in seven of the nine examined populations. Among those seven populations, AMOVA and clustering analyses showed a clear genetic separation between all rootstocks and all scions. However, the two remaining populations, both from northern Yunnan, showed genetic similarity between scions and rootstocks, possibly indicating that wild populations here are derived from feralized local cultivars. Moreover, our data indicated probable crop-to-wild gene flow between scions and rootstocks, across all populations.
Conclusions
Our results indicate that large-scale grafting has been causing genetic diversity erosion and genetic structure breakdown in the wild material of J. sigillata within Yunnan. To mitigate these effects, we caution against the overuse of grafting in wild populations of iron walnut and other crop species and recommend the preservation of natural genotypes through in situ and ex situ conservation.
Funder
National Natural Science Foundation of China
Top-notch Young Talents Project of Yunnan Provincial “Ten Thousand Talents Program”
CAS “Light of West China” Program, Natural Science Foundation of Yunnan
Key Research Program of Frontier Sciences, CAS
Yunnan Fundamental Research Projects
Postdoctoral International Exchange Program of the Office of China Postdoctoral Council
Postdoctoral Targeted Funding
Postdoctoral Research Fund of Yunnan Province
CAS President’s International Fellowship Initiative
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献