Abstract
Abstract
Background
Safflower (Carthamus tinctorius L.) is an important cash crop, of which the dried tube flower is not only an important raw material for dyes and cosmetics but also an important herb widely used in traditional Chinese medicine. The pigment and bioactive compounds are composed of flavonoids (mainly quinone chalcones), and studies have reported that MeJA can promote the biosynthesis of quinone chalcones, but the mechanism underlying the effect of MeJA in safflower remains unclear. Here, we attempt to use metabolomics and transcriptome technologies to analyse the molecular mechanism of flavonoid biosynthesis under MeJA treatment in safflower.
Results
Based on a UHPLC-ESI-MS/MS detection platform and a self-built database (including hydroxysafflor yellow A, HSYA), a total of 209 flavonoid metabolites were detected, and 35 metabolites were significantly different after treatment with MeJA. Among them, 24 metabolites were upregulated upon MeJA treatment, especially HSYA. Eleven metabolites were downregulated after MeJA treatment. Integrated metabolomics and transcriptome analysis showed that MeJA might upregulate the expression of upstream genes in the flavonoid biosynthesis pathway (such as CHSs, CHIs and HCTs) and downregulate the expression of downstream genes (such as F3Ms, ANRs and ANSs), thus promoting the biosynthesis of quinone chalcones, such as HSYA. The transcription expressions of these genes were validated by real-time PCR. In addition, the promoters of two genes (CtCHI and CtHCT) that were significantly upregulated under MeJA treatment were cloned and analysed. 7 and 3 MeJA response elements were found in the promoters, respectively.
Conclusions
MeJA might upregulate the expression of the upstream genes in the flavonoid biosynthesis pathway and downregulate the expression of the downstream genes, thus promoting the biosynthesis of quinone chalcones. Our results provide insights and basic data for the molecular mechanism analysis of flavonoid synthesis in safflower under MeJA treatment.
Funder
National Science Foundation of China
Young Scientists Fund
Postdoctoral Research Foundation of China
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. China T. S. P. C. o. Pharmacopoeia of the People’s Republic of China, Part I. Beijing: Chemical Industry Press; 2015. p. 151.
2. Lou ZQ, Liu ML. A pharmacognostical study of the Chinese drug, Honghua,Carthamitinctor II. Acta Pharm Sin. 1956;4:233–9.
3. Qu C, Wang LY, Jin WT, Tang YP, Jin Y, Shi QX, Shang LL, Shang EX, Duan JA. Comparative analysis of the effects of Hydroxysafflor yellow a and Anhydrosafflor yellow B in safflower series of herb pairs using prep-HPLC and a selective knock-out approach. Molecules. 2016;21:1480–506.
4. Wei X, Liu H, Sun X, Fu FH, Zhang XM, Wang J, An J, Ding H. Hydroxysafflor yellow a protects rat brains against ischemia-reperfusion injury byantioxidant action. Neurosci Lett. 2005;386:58–62.
5. Zhu H, Wang Z, Ma C, Tian J, Fu F, Li C, Guo D, Roeder E, Liu K. Neuroprotective effects of hydroxysafflor yellow a: in vivo and in vitrostudies. Planta Med. 2003;69:429–33.
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献