A survey of the full-length transcriptome of Gracilariopsis lemaneiformis using single-molecule long-read sequencing

Author:

Chen Xiaojiao,Tang Yue Yao,Yin Haodong,Sun Xue,Zhang Xiaoqian,Xu Nianjun

Abstract

Abstract Background Posttranscriptional processing of precursor mRNAs contributes to transcriptome and protein diversity and gene regulatory mechanisms in eukaryotes. However, this posttranscriptional mechanism has not been studied in the marine macroalgae Gracilariopsis lemaneiformis, which is the most cultivated red seaweed species in China. Results In the present study, third-generation sequencing (Pacific Biosciences single-molecule real-time long-read sequencing, SMRT-Seq) was used to sequence the full-length transcriptome of G. lemaneiformis to identify alternatively spliced transcripts and alternative polyadenylation (APA) sites in this species. RNAs were isolated from G. lemaneiformis under various treatments including abiotic stresses and exogenous phytohormones, and then equally pooled for SMRT-Seq. In summary, 346,544 full-length nonchimeric reads were generated, from which 13,630 unique full-length transcripts were obtained in G. lemaneiformis. Compared with the known splicing events in the gene models, more than 3000 new alternative splicing (AS) events were identified in the SMRT-Seq reads. Additionally, 810 genes were found to have poly (A) sites and 91 microRNAs (miRNAs), 961 long noncoding RNAs and 1721 novel genes were identified in G. lemaneiformis. Moreover, validation experiments showed that abiotic stresses and phytohormones could induce some specific AS events, especially intron retain isoforms, cause some alterations to the relative ratios of transcripts annotated to the same gene, and generate novel 3′ ends because of differential APA. The growth of G. lemaneiformis was inhibited by Cu stress, while this inhibition was alleviated by ACC treatment. RNA-Seq analysis further revealed that 211 differential alternative splicing (DAS) events and 142 DAS events was obtained in CK vs Cu and Cu vs Cu + ACC, respectively, suggesting that AS of functional genes could be regulated by Cu stress and ACC. Compared with Cu stress, the expression of transcripts with DAS events mainly involved in the carbon fixation in photosynthetic organisms and oxidative phosphorylation pathway was upregulated in Cu + ACC treatment, revealing that ACC alleviated the growth inhibition by Cu stress by increasing carbon fixation and oxidative phosphorylation. Conclusions Our results provide the first comprehensive picture of the full-length transcriptome and posttranscriptional mechanism in red macroalgae, including transcripts that appeared in the presence of common abiotic stresses and phytohormones, which will improve the gene annotations of Gracilariopsis and contribute to the study of gene regulation in this important cultivated seaweed.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

open fund of State Key Laboratory of Plant Physiology and Biochemistry

Key Program of Science and Technology Innovation in Ningbo

National Key R & D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3