Author:
Zhang Ningnan,Xue Shiyu,Song Jie,Zhou Xiuren,Zhou Dahao,Liu Xiaojin,Hong Zhou,Xu Daping
Abstract
Abstract
Background
Agarwood is a highly sought-after resinous wood for uses in medicine, incense, and perfume production. To overcome challenges associated with agarwood production in Aquilaria sinensis, several artificial agarwood-induction treatments have been developed. However, the effects of these techniques on the metabolome of the treated wood samples are unknown. Therefore, the present study was conducted to evaluate the effects of four treatments: fire drill treatment (F), fire drill + brine treatment (FS), cold drill treatment (D) and cold drill + brine treatment (DS)) on ethanol-extracted oil content and metabolome profiles of treated wood samples from A. sinensis.
Results
The ethanol-extracted oil content obtained from the four treatments differed significantly (F < D < DS < FS). A total of 712 metabolites composed mostly of alkaloids, amino acids and derivatives, flavonoids, lipids, phenolic acids, organic acids, nucleotides and derivatives, and terpenoids were detected. In pairwise comparisons, 302, 155, 271 and 363 differentially accumulated metabolites (DAM) were detected in F_vs_FS, D_vs_DS, F_vs_D and FS_vs_DS, respectively. The DAMs were enriched in flavonoid/flavone and flavonol biosynthesis, sesquiterpenoid and triterpenoid biosynthesis. Generally, addition of brine to either fire or cold drill treatments reduced the abundance of most of the metabolites.
Conclusion
The results from this study offer valuable insights into synthetically-induced agarwood production in A. sinensis.
Publisher
Springer Science and Business Media LLC
Reference63 articles.
1. Kumeta Y, Ito M. Characterization of α-humulene synthases responsible for the production of sesquiterpenes induced by methyl jasmonate in aquilaria cell culture. Available online: https://link.springer.com/article/10.1007/s11418-016-0999-8#citeas (Accessed on 29 April 2021).
2. Ding X, Mei W, Lin Q, Wang H, Wang J, Peng S, et al. Genome sequence of the Agarwood tree Aquilaria Sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family. GigaScience. 2020;9:1–10. https://doi.org/10.1093/gigascience/giaa013.
3. Xu Y, Zhang Z, Wang M, Wei J, Chen H, Gao Z, et al. Identification of genes related to Agarwood formation: Transcriptome analysis of healthy and wounded tissues of Aquilaria Sinensis. BMC Genomics. 2013;14. https://doi.org/10.1186/1471-2164-14-227.
4. Tan CS, Isa NM, Ismail I, Zainal Z. Agarwood induction: current developments and future perspectives. Front Plant Sci. 2019;10:1–13. https://doi.org/10.3389/fpls.2019.00122.
5. Liao G, Mei WL, Kong FD, Li W, Yuan JZ, Dai HF. 5,6,7,8-Tetrahydro-2-(2-Phenylethyl) Chromones from artificial Agarwood of Aquilaria Sinensis and their inhibitory activity against Acetylcholinesterase. Phytochemistry. 2017;139:98–108. https://doi.org/10.1016/j.phytochem.2017.04.011.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献