Effects of N and P additions on twig traits of wild apple (Malus sieversii) saplings

Author:

Zhang Yuan-Yuan,Yan Jing-Ming,Zhou Xiao-Bing,Zhang Yuan-Ming,Tao Ye

Abstract

Abstract Background Wild apple (Malus sieversii) is under second-class national protection in China and one of the lineal ancestors of cultivated apples worldwide. In recent decades, the natural habitation area of wild apple trees has been seriously declining, resulting in a lack of saplings and difficulty in population regeneration. Artificial near-natural breeding is crucial for protecting and restoring wild apple populations, and adding nitrogen (N) and phosphorous (P) is one of the important measures to improve the growth performance of saplings. In this study, field experiments using N (CK, N1, N2, and N3: 0, 10, 20, and 40 g m− 2 yr− 1, respectively), P (CK, P1, P2, and P3: 0, 2, 4, and 8 g m− 2 yr− 1, respectively), N20Px (CK, N2P1, N2P2, and N2P3: N20P2, N20P4 and N20P8 g m− 2 yr− 1, respectively), and NxP4 (CK, N1P2, N2P2, and N3P2: N10P4, N20P4, and N40P4 g m− 2 yr− 1, respectively) treatments (totaling 12 levels, including one CK) were conducted in four consecutive years. The twig traits (including four current-year stem, 10 leaf, and three ratio traits) and comprehensive growth performance of wild apple saplings were analyzed under different nutrient treatments. Results N addition had a significantly positive effect on stem length, basal diameter, leaf area, and leaf dry mass, whereas P addition had a significantly positive effect on stem length and basal diameter only. The combination of N and P (NxP4 and N20Px) treatments evidently promoted stem growth at moderate concentrations; however, the N20Px treatment showed a markedly negative effect at low concentrations and a positive effect at moderate and high concentrations. The ratio traits (leaf intensity, leaf area ratio, and leaf to stem mass ratio) decreased with the increase in nutrient concentration under each treatment. In the plant trait network, basal diameter, stem mass, and twig mass were tightly connected to other traits after nutrient treatments, indicating that stem traits play an important role in twig growth. The membership function revealed that the greatest comprehensive growth performance of saplings was achieved after N addition alone, followed by that under the NxP4 treatment (except for N40P4). Conclusions Consequently, artificial nutrient treatments for four years significantly but differentially altered the growth status of wild apple saplings, and the use of appropriate N fertilizer promoted sapling growth. These results can provide scientific basis for the conservation and management of wild apple populations.

Funder

the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program

Youth Top Talents Project of “Tianshan Talent” Training Plan of Xinjiang Uygur Autonomous Region

the Youth Innovation Promotion Association Project, Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference63 articles.

1. Lin PJ, Cui NR. Wild fruit forests resources in Tianshan Mountains. China Forestry Publishing House; 2000. pp. 14–9.

2. Yan GR, Xu Z. Study on the wild fruit trees in Xinjiang, China. Beijing, China: China Forestry Publishing House; 2010. pp. 12–25.

3. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A. The genome of the domesticated apple (Malus x domestica Borkh). Nat Genet. 2010;42(10):833–9.

4. Duan NB, Bai Y, Sun HH, Wang N, Ma YM, Li MJ. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat Commun. 2017;8:249.

5. Su ZH, Li WJ, Cao QM, Zhou XB, Zhang YM. Age composition and quantitative dynamic status of Malus sieversii population. Arid Zone Res. 2019;36(5):1153–60.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3