Author:
Liu Haiyan,Chen Houying,Ding Guijie,Li Kuaifen,Ren Qifei
Abstract
Abstract
Background
Pinus massoniana Lamb. is an important afforestation tree species with high economic, ecological and medicinal values. Aluminum (Al) toxicity driven by soil acidification causes dieback of P. massoniana plantations. Previous studies showed that ectomycorrhizal fungi alleviate Al stress damages in Pinus, but the underlying molecular mechanisms and key genes induced by ectomycorrhizal fungi inoculation under Al stress in Pinus have not been explored. Herein, we applied Al stress for 60 days to P. massoniana seedlings inoculated with Suillus luteus (SL) and those non-inoculated. Then, we compared their growth parameters and transcriptome in order to detect candidate genes induced by SL conferring Al tolerance in P. massoniana.
Result
Our results showed that SL inoculation confers Al stress tolerance in P. massoniana through improved growth performance, strong antioxidant enzyme activities and reduced malondialdehyde accumulation as compared to non-inoculated seedlings. Transcriptome sequencing further supported these findings as very few genes (51 genes) were transcriptionally altered by Al in SL inoculated plants as compared to non-inoculated plants (2140 genes). We identified three core genes (cox1, cox3 and Nd1) that were strongly up-regulated by Al in the SL inoculated plants but were down-regulated in the non-inoculated plants. We also identified 42 genes specifically regulated by SL inoculated plants under Al stress, which are involved in a wide range of biological processes such as antioxidative response, transporters, hormone signaling and plant pathogen infection responses.
Conclusions
Altogether, our data suggest that SL inoculation induces priming of key stress response pathways and triggers specific genes that efficiently alleviate Al stress effects in P. massoniana. The candidate genes resources generated in this study are of utmost importance for functional characterization and molecular studies aiming at improving Al tolerance in plants.
Publisher
Springer Science and Business Media LLC
Reference86 articles.
1. Luo YH, Sun DJ, Lin JY, Guo WF, Lu LH, Wen YG. Effect of close-to-nature management on the natural regeneration and species diversity in a masson pine plantation. Acta Ecol Sin. 2013;33(19):6154–62.
2. Dou X, Deng Q, Li M, Wang W, Zhang Q, Cheng X. Reforestation of Pinus massoniana alters soil organic carbon and nitrogen dynamics in eroded soil in South China. Ecol Eng. 2013;52:154–60.
3. Wang Y, Ding G. Physiological responses of mycorrhizal Pinus massoniana seedlings to drought stress and drought resistance evaluation. Chin J Appl Ecol. 2013;24:639–45.
4. Zhang, T., Wen, X. & Ding, G. Ectomycorrhizal symbiosis enhances tolerance to low phosphorous through expression of phosphate transporter genes in masson pine (Pinus massoniana). Acta Physiol Plant 39, 101 (2017). https://doi.org/10.1007/s11738-017-2392-y.
5. Wang X, Lu L, Xing H, Zeng J, Xie Y, Cai D, Liu X, Zhang X. Effects of close-to-nature conversion on Pinus massoniana plantations at different stand developmental stages. Trop Conserv Sci. 2018;11:1–16.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献