Author:
Makowski Wojciech,Królicka Aleksandra,Tokarz Barbara,Miernicka Karolina,Kołton Anna,Pięta Łukasz,Malek Kamilla,Ekiert Halina,Szopa Agnieszka,Tokarz Krzysztof Michał
Abstract
Abstract
Background
Plant transformation with rol oncogenes derived from wild strains of Rhizobium rhizogenes is a popular biotechnology tool. Transformation effects depend on the type of rol gene, expression level, and the number of gene copies incorporated into the plant’s genomic DNA. Although rol oncogenes are known as inducers of plant secondary metabolism, little is known about the physiological response of plants subjected to transformation.
Results
In this study, the physiological consequences of rolB oncogene incorporation into the DNA of Dionaea muscipula J. Ellis was evaluated at the level of primary and secondary metabolism. Examination of the teratoma (transformed shoots) cultures of two different clones (K and L) showed two different strategies for dealing with the presence of the rolB gene. Clone K showed an increased ratio of free fatty acids to lipids, superoxide dismutase activity, synthesis of the oxidised form of glutathione, and total pool of glutathione and carotenoids, in comparison to non-transformed plants (control). Clone L was characterised by increased accumulation of malondialdehyde, proline, activity of superoxide dismutase and catalase, total pool of glutathione, ratio of reduced form of glutathione to oxidised form, and accumulation of selected phenolic acids. Moreover, clone L had an enhanced ratio of total triglycerides to lipids and accumulated saccharose, fructose, glucose, and tyrosine.
Conclusions
This study showed that plant transformation with the rolB oncogene derived from R. rhizogenes induces a pleiotropic effect in plant tissue after transformation. Examination of D. muscipula plant in the context of transformation with wild strains of R. rhizogenes can be a new source of knowledge about primary and secondary metabolites in transgenic organisms.
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Mauro ML, Costantino P, Bettini PP. The never ending story of rol genes: a century after. Plant Cell Tissue Organ Cult 2017;131:201–212.
2. Matveeva TV, Sokornova SV, Lutova LA. Influence of Agrobacterium oncogenes on secondary metabolism of plants. Phytochem Rev. 2015;14:541–54.
3. Tusevski O, Vinterhalter B, Milošević DK, Soković M, Ćirić A, Vinterhalter D, et al. Production of phenolic compounds, antioxidant and antimicrobial activities in hairy root and shoot cultures of Hypericum perforatum L. Plant Cell Tissue Organ Cult. 2017;128:589–605.
4. Bulgakov VP, Gorpenchenko TY, Veremeichik GN, Shkryl YN, Tchernoded GK, Bulgakov DV, et al. The rolB gene suppresses reactive oxygen species in transformed plant cells through the sustained activation of antioxidant defense. Plant Physiol. 2012;158:1371–81.
5. Bulgakov VP, Shkryl YN, Veremeichik GN, Gorpenchenko TY, Vereshchagina YV. In: Doran PM, editor. Biotechnology of hairy root systems. Heidelberg New York Dordrecht London: Springer; 2013. p. 1–22.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献