Abstract
Abstract
Background
Legumes comprise important crops that offer major agronomic benefits, including the capacity of establishing symbiosis with rhizobia, fixing atmospheric N2. It has been proven that legumes are particularly susceptible to boron (B) stress, which leads to important yield penalties. Boron (B) deficiency or toxicity in plants causes the inhibition of growth and an altered development. Under such conditions, the participation of two distinct protein families (the major intrinsic protein family MIP and the Boron transporter family BOR) is required to minimize detrimental effects caused by B stress. However, in legumes, little is known about the transport mechanisms responsible for B uptake and distribution, especially under deficiency.
Results
A Medicago truncatula protein, MtNIP5;1 (Medtr1g097840) (homologous to the Arabidopsis thaliana AtNIP5;1) was identified as a novel legume B transporter involved in B uptake under deficiency. Further analyses revealed that this M. truncatula aquaporin expression was boron-regulated in roots, being induced under deficiency and repressed under toxicity. It localizes at the plasma membrane of root epidermal cells and in nodules, where B plays pivotal roles in symbiosis. Furthermore, the partial complementation of the nip5;1–1 A. thaliana mutant phenotype under B deficiency supports a functional role of MtNIP5;1 as a B transporter in this legume model plant.
Conclusions
The results here presented support a functional role of MtNIP5;1 in B uptake under deficiency and provides new insights into B transport mechanisms in legume species.
Publisher
Springer Science and Business Media LLC
Reference78 articles.
1. The WK. Effect of Boric Acid and Borax on the Broad Bean and certain other Plants. Ann Bot. Oxford University Press. 1923;37:629–72.
2. O’Neill MA, Eberhard S, Albersheim P, Darvill AG. Requirement of borate cross-linking of Cell Wall Rhamnogalacturonan II for Arabidopsis growth. Science. 2001;294(5543):846–9.
3. Koshiba T, Kobayashi M, Matoh T. Boron deficiency: how does the defect in cell wall damage the cells? Plant Signal Behav. 2009;4(6):557–8.
4. Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H, et al. Boron in plant biology. Plant Biol. 2002;4(2):205–23.
5. Shireen F, Nawaz MA, Chen C, Zhang Q, Zheng Z, Sohail H, et al. Boron: functions and approaches to enhance its availability in plants for sustainable agriculture. Int J Mol Sci. 2018;19(7):1856.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献