Identification of key gene networks related to the freezing resistance of apricot kernel pistils by integrating hormone phenotypes and transcriptome profiles

Author:

Liu Xiaojuan,Xu Huihui,Yu Dan,Bi Quanxin,Yu Haiyan,Wang Libing

Abstract

Abstract Background Apricot kernel, a woody oil tree species, is known for the high oil content of its almond that can be used as an ideal feedstock for biodiesel production. However, apricot kernel is vulnerable to spring frost, resulting in reduced or even no yield. There are no effective countermeasures in production, and the molecular mechanisms underlying freezing resistance are not well understood. Results We used transcriptome and hormone profiles to investigate differentially responsive hormones and their associated co-expression patterns of gene networks in the pistils of two apricot kernel cultivars with different cold resistances under freezing stress. The levels of auxin (IAA and ICA), cytokinin (IP and tZ), salicylic acid (SA) and jasmonic acid (JA and ILE-JA) were regulated differently, especially IAA between two cultivars, and external application of an IAA inhibitor and SA increased the spring frost resistance of the pistils of apricot kernels. We identified one gene network containing 65 hub genes highly correlated with IAA. Among these genes, three genes in auxin signaling pathway and three genes in brassinosteroid biosynthesis were identified. Moreover, some hub genes in this network showed a strong correlation such as protein kinases (PKs)-hormone related genes (HRGs), HRGs-HRGs and PKs-Ca2+ related genes. Conclusions Ca2+, brassinosteroid and some regulators (such as PKs) may be involved in an auxin-mediated freezing response of apricot kernels. These findings add to our knowledge of the freezing response of apricot kernels and may provide new ideas for frost prevention measures and high cold–resistant apricot breeding.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3