Abstract
Abstract
Background
Transcriptome time series can be used to track the expression of genes during development, allowing the timing, intensity, and dynamics of genetic programmes to be determined. Furthermore, time series analysis can reveal causal relationships between genes, leading to an understanding of how the regulatory networks are rewired during development. Due to its impact on yield, a developmental transition of agricultural interest in crops is the switch from vegetative to floral growth. We previously reported the collection of genome-wide gene expression data during the floral transition in the allopolyploid crop Brassica napus (oilseed rape, OSR). To provide the OSR research community with easy access to this dataset, we have developed the Oilseed Rape Developmental Expression Resource (ORDER; http://order.jic.ac.uk).
Results
ORDER enables users to search for genes of interest and plot expression patterns during the floral transition in both a winter and a spring variety of OSR. We illustrate the utility of ORDER using two case studies: the first investigating the interaction between transcription factors, the second comparing genes that mediate the vernalisation response between OSR and radish (Raphanus sativus L.). All the data is downloadable and the generic website platform underlying ORDER, called AionPlot, is made freely and openly available to facilitate the dissemination of other time series datasets.
Conclusions
ORDER provides the OSR research community with access to a dataset focused on a period of OSR development important for yield. AionPlot, the platform on which ORDER is built, will allow researchers from all fields to share similar time series datasets.
Funder
Biotechnology and Biological Sciences Research Council
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. EST: Oilcrops, oils and meals market assessment [Internet]. [cited 2017 Sep 6]. Available from: http://www.fao.org/economic/est/est-commodities/oilcrops/oilcrops-oils-and-meals-market-assessment/en/.
2. Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci. 2011 Jun 1;68(12):2013–37.
3. Lysak MA, Koch MA, Pecinka A, Schubert I. Chromosome triplication found across the tribe Brassiceae. Genome Res. 2005 Apr;15(4):516–25.
4. Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18724–8.
5. The Brassica rapa Genome Sequencing Project Consortium, Wang X, Wang H, Wang J, Sun R, Wu J, et al. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet. 2011 Oct;43(10):1035–9.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献