Genomic survey sequencing, development and characterization of single- and multi-locus genomic SSR markers of Elymus sibiricus L

Author:

Xiong Yi,Lei Xiong,Bai Shiqie,Xiong Yanli,Liu Wenhui,Wu Wendan,Yu Qingqing,Dong Zhixiao,Yang Jian,Ma XiaoORCID

Abstract

Abstract Background Siberian wildrye (Elymus sibiricus L.) attracts considerable interest for grassland establishment and pasture recovery in the Qinghai-Tibet Plateau (QTP) due to its excellence in strong stress tolerance, high nutritional value and ease to cultivate. However, the lack of genomic information of E. sibiricus hampers its genetics study and breeding process. Results In this study, we performed a genome survey and developed a set of SSR markers for E. sibiricus based on Next-generation sequencing (NGS). We generated 469.17 Gb clean sequence which is 58.64× of the 6.86 Gb estimated genome size. We assembled a draft genome of 4.34 Gb which has 73.23% repetitive elements, a heterozygosity ratio of 0.01% and GC content of 45.68%. Based on the gnomic sequences we identified 67,833 SSR loci and from which four hundred were randomly selected to develop markers. Finally, 30 markers exhibited polymorphism between accessions and ten were identified as single-locus SSR. These newly developed markers along with previously reported 30 ones were applied to analyze genetic polymorphism among 27 wild E. sibiricus accessions. We found that single-locus SSRs are superior to multi-loci SSRs in effectiveness. Conclusions This study provided insights into further whole genome sequencing of E. sibiricus in strategy selection. The novel developed SSR markers will facilitate genetics study and breeding for Elymus species.

Funder

National Natural Science Foundation of China

Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan plateau

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference54 articles.

1. Ma X, Chen SY, Zhang XQ, Zhou YH, Bai SQ, Liu W. Genetic diversity of gliadin in worldwide germplasm collections of Elymus sibiricus. Acta Pratacul Sin. 2009;18:59–66.

2. Dewey DR, Barkworth ME. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. Genet. Manipulation Plant Breed., Proc., Int. Symp. 1984;35:202.

3. Yan JJ, Bai SQ, Ma X, Gan YM, Zhang JB. Genetic diversity of Elymus sibiricus and its breeding in China. Chin Bull Bot. 2007;24:226–31.

4. Ma X, Zhang XQ, Zhou YH, Bai SQ, Liu W. Assessing genetic diversity of Elymus sibiricus (Poaceae: Triticeae) populations from Qinghai-Tibet plateau by ISSR markers. Biochem Syst Ecol. 2008;36:514–22.

5. Yan JJ, Bai SQ, Zhang XQ, You MH, Zhang CB, Li DX, Zeng Y. Genetic diversity of wild Elymus sibiricus germplasm from the Qinghai-Tibetan plateau in China detected by SRAP markers. Acta Pratacul Sin. 2010;19:173–83.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3